Two-Step Quenching & Partitioning of 42SiCrB Steel

Article Preview

Abstract:

In recent years, Quenching and Partitioning (Q&P) became an interesting thermal process route for semi-finished high strength low alloyed steel components. Recent publications demonstrate promising mechanical properties with considerable ductility enhancement. To assess the potential of the two-step Q&P heat treatment in seamless tube production, corresponding tests are carried out on 42SiCrB steel (0.42wt% C, 2.0wt% Si, 1.3wt.% Cr, 0.6wt.% Mn, 0.002wt.% B). Feasible Q&P heat treatment process parameters are identified using the Constrained-Carbon-Equilibrium (CCE) model, carbon diffusion calculations and isothermal TTT curves with previous quenching. Furthermore achieved volume fraction of retained austenite is analyzed by XRD experiments.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

738-743

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Grosse-Heilmann, N.; Zylla, I. -M.; Kozeschnik, E.; Peters, A. (2012), One-step Q&P of seamless tubes made from 42SiCrB, Materials Science & Technology Conference and Exhibition (2012).

DOI: 10.4028/www.scientific.net/msf.783-786.738

Google Scholar

[2] Speer, J.; Matlock, D. K.; Cooman, B. D. & Schroth, J. (2003), Carbon partitioning into austenite after martensite transformation, Acta Materialia 51(9), 2611-2622.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[3] Koistinen, D. & Marburger, R. (1959), A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica 7(1), 59 - 60.

DOI: 10.1016/0001-6160(59)90170-1

Google Scholar

[4] Andrews, K. W. (1965), Empirical Formulae for the Calculation of Some Transformation Temperatures, JISI 203, 721-727.

Google Scholar

[5] Einstein, A. (1905), Über die von der Molekularkinetischen Theorie der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen, Annalen der Physik 332 (8), 549-560.

DOI: 10.1002/andp.19053220806

Google Scholar

[6] Smoluchowski, M. (1906), Zur Kinetischen Theorie der Brown'schen Molekularbewegung und der Suspensionen, Annalen der Physik 326 (14), 756-580.

DOI: 10.1002/andp.19063261405

Google Scholar

[7] Agren, J. (1986), Ser. Metall. 20 1507.

Google Scholar

[8] Mola, J. & De Cooman, B. C. (2012) Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels, Metallurcigal and Materials Transactions A, (2012).

DOI: 10.1007/s11661-012-1420-1

Google Scholar

[9] Edmonds, D.; He, K.; Rizzo, F.; Cooman, B. D.; Matlock, D. & Speer, J. (2006), Quenching and partitioning martensite–A novel steel heat treatment, Materials Science and Engineering: A 438-440, 25 - 34.

DOI: 10.1016/j.msea.2006.02.133

Google Scholar

[10] Santofimia, M.; Zhao, L. & Sietsma, J. (2008), Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels, Scripta Materialia 59(2), 159 - 162.

DOI: 10.1016/j.scriptamat.2008.02.045

Google Scholar

[11] Kozeschnik, E., MatCalc version 5. 52 (rel 1. 005), Vienna University of Technology, (2013).

Google Scholar

[12] Povoden-Karadeniz, E., MatCalc Fe database, version 1. 028, created 2012-09-28, assessed in 2012 at TU Wien.

Google Scholar

[13] Povoden-Karadeniz, E., MatCalc mobility diffusion steel database, version v1. 001, created 2012-10-15, assessed in 2012 at TU Wien.

Google Scholar