Nucleation Rate and Number of Precipitates in V and Nb-Microalloyed Steels

Article Preview

Abstract:

Recrystallization-precipitation-time-temperature (RPTT) diagrams were experimentally determined for two microalloyed steels with V and Nb, respectively, at a strain of 0.35 and a strain rate of 3.63 s-1. From the RPTT diagrams, and applying the classic theory of nucleation, the nucleation rate was calculated for both steels. In order to determine the mentioned magnitudes, several parameters were calculated, such as: the Zeldovich factor (Z), the energy of formation of the nucleus (ΔG), the driving force for precipitation (ΔGv), the critical radius for nucleation (Rc), and the dislocation density at the start of precipitation (ρ), among others. The calculated data has made it possible to clarify the shape of precipitation start and finish curves and to plot the nucleation rate as a function of temperature. The number of precipitates was calculated by integration of the nucleation rate expression. In this way, substantial differences were established between the two types of microalloyed steels, including the final size of the V(C, N) and Nb (C, N) precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

892-897

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Xu, B.G. Thomas, R. O'Malley, Metall. Mater. Trans. A. 42 (2011) 524-539.

Google Scholar

[2] C.M. Sellars: Mater. Sci Technol. 6 (1990) 1072-1081.

Google Scholar

[3] E. J. Palmiere, C.I. Garcia, A.J. DeArdo, Metall. Mater. Trans. A 25 (1994) 277-286.

Google Scholar

[4] W.J. Liu, Metall. Mater. Trans. A 26 (1995) 1641-1657.

Google Scholar

[5] B. Dutta, E, Valdes, C.M. Sellars: Acta Metall. Mater. 40 (1992) 653-662.

Google Scholar

[6] B. Dutta, E.J. Palmiere, C.M. Sellars, Acta Mater. 49 (2001) 785-794.

Google Scholar

[7] K.C. Russel, Adv. Colloid. Interface Sci. 13 (1980) 205-318.

Google Scholar

[8] R. Kampmann, R. Wagner: Mater. Sci. Tech. A Comprenhensive Treatment, ed. R.W. Cahn, P. Hassen and E.J. Krammer, VCH Verlagsgesselschaft mbH, Weinheim, 1991, vol. 5, p.213.

Google Scholar

[9] E.T. Turkdogan: Iron Steelmaker 3 (1989) 61-75.

Google Scholar

[10] A. Faessel: Rev. Métall,. Cah. Inf. Tech. 33 (1976) 875-892.

Google Scholar

[11] S.F. Medina and C.A. Hernández: Acta Mater. 44 (1996) 155-163.

Google Scholar

[12] M. Gómez, S. F. Medina, A. Quispe, P. Valles: ISIJ Int. 42 (2002) 423-431.

Google Scholar

[13] S.F. Medina, A. Quispe, M. Gómez: Mater. Sci. Technol. 19 (2003) 99-108.

Google Scholar

[14] M. Perez, M. Dumont, D. Acevedo-Reyes: Acta Mater. 56 (2008) 2119-2132.

Google Scholar

[15] N. Fujita, H.K.D.H. Bhadeshia: Mater. Sci. Tecnol. 17 (2001) 403-408.

Google Scholar

[16] P. Maugis, M. Gouné: Acta Mater. 53 (2005) 3359-3367.

Google Scholar

[17] W.P. Sun, M. Militzer, D.Q. Bai, J.J. Jonas: Acta metal. Mater. 41 (1993) 3595-3604.

Google Scholar

[18] B. Dutta, E. Valdes, C.M. Sellars: Acta Metall. Mater. 40(1992) 653-662.

Google Scholar

[19] F. Perrard, A. Deschamps, P. Maugis: Acta Mater. 55 (2007) 1255-1266.

Google Scholar

[20] E.T. Turkdogan: Iron Steelmaker 16.

Google Scholar

[1989] 61-75.

Google Scholar

[21] M. Perez, D. Acevedo-Reyes, T. Courtois, E. Epicier, P. Maugis: Phil. Mag. Lett. 87 (2007) 645-656.

Google Scholar

[22] S.F. Medina, L. Rancel, M. Gómez, R. Ishak, M. de Sanctis: ISIJ Int. 48 (2008) 1603-1608.

DOI: 10.2355/isijinternational.48.1603

Google Scholar

[23] T. Gladman: The physical metallurgy of microalloyed steels, The Institute of Materials, London, (1997).

Google Scholar

[24] S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert: Mater. Sci. Eng. A. 528 (2011) 5519-5528.

Google Scholar

[25] H. Oikawa: Tetsu-to-hagane 68 (1982) 1489-1497.

Google Scholar