Facile Solution-Grown Mo-Doped Vanadium Dioxide Thermochromic Films with Decreased Phase Transition Temperature and Narrowed Hysteresis Loop Width

Article Preview

Abstract:

Molybdenum (Mo) doped vanadium dioxide (VO2) (V1-xMoxO2) thermochromic thin films with different Mo concentrations on borosilicate glasses were successfully synthesized via a facile and economic solution-based deposition method. The influences of substitutional doping with Mo dopants on the crystal structure and film morphology of VO2 were evaluated. All of the films were confirmed to be pure monoclinic crystalline phase of VO2 and no molybdenum oxides formed, suggesting the formation of a homogeneously dispersed solid-solution. The particle sizes and root-mean-square (RMS) roughness level obviously decreased upon Mo doping. V1-xMoxO2 films exhibited low metal-semiconductor transition (MST) temperature (Tc) and retained the excellent switching property at near-infrared region simultaneously. The rate of change of Tc with Mo doping reached as high as ~10°C/at.%. The reduced Tc may be attributed to the disruption of homo-polar V4+-V4+ bonding after the incorporation of Mo atoms in VO2 octahedron configuration. V1-xMoxO2 thin films exhibited narrower hysteresis loop width compared to undoped VO2, which show the promise for promoting practical implementation of VO2-based thermochromic fenestration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-30

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature, Appl. Phys. Lett. 95(2009): 171909.

DOI: 10.1063/1.3229949

Google Scholar

[2] C. Batista, R.M. Ribeiro, V. Teixeira, Synthesis and characterization of VO2-based thermochromic thin films for energy-efficient windows, Nanoscale Res. Lett. 6(2011): 301.

DOI: 10.1186/1556-276x-6-301

Google Scholar

[3] C. Leroux, G. Nihoul, G.Van Tendeloo: From VO2 (B) to VO2 (R): Theoretical structures of VO2 polymorphs and in situ electron microscopy, Phys. Rev. B 57(1998): 5111-5121.

Google Scholar

[4] S. Myung, M. Lee, G.T. Kim, J.S. Ha, S. Hong, Large-scale "surface-programmed assembly" of pristine vanadium oxide nanowire-based devices, Adv. Mater. 17 (2005): 2361-2364.

DOI: 10.1002/adma.200500682

Google Scholar

[5] S.J. Yun, J.W. Lim, B.G. Chae, B.J. Kim, H.T. Kim, Characteristics of vanadium dioxide films deposited by RF-magnetron sputter deposition technique using V-metal target, Physica B-Condensed Matter 403(2008): 1381-1383.

DOI: 10.1016/j.physb.2007.10.362

Google Scholar

[6] J. Li, J. Dho, Anomalous optical switching and thermal hysteresis behaviors of VO2 films on glass substrate, Appl. Phys. Lett. 99(2011): 231909.

DOI: 10.1063/1.3668089

Google Scholar

[7] G. Golan, A. Axelevitch, B. Sigalov, B. Gorenstein, Metal-insulator phase transition in vanadium oxides films, Microelectr. J. 34(2003): 255-258.

DOI: 10.1016/s0026-2692(03)00002-8

Google Scholar

[8] M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, T. Tsuchiya, Ti-doped VO2 films grown on glass substrates by excimer-laser-assisted metal organic deposition process, Jpn. J. Appl. Phys. 50(2011): 01BE04.

DOI: 10.7567/jjap.50.01be04

Google Scholar

[9] W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B.K. Meyer, W. Niessner, D. Schalch, A. Scharmann, Tungsten and fluorine co-doping of VO2 films, Thin Solid Films 402(2002): 226-231.

DOI: 10.1016/s0040-6090(01)01603-0

Google Scholar

[10] T.J. Hanlon, J. A. Coath, M.A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method, Thin Solid Films 436(2003): 269-272.

DOI: 10.1016/s0040-6090(03)00602-3

Google Scholar

[11] C. Batista, J. Carneiro, R.M. Ribeiro, V. Teixeira, Reactive pulsed-DC sputtered Nb-doped VO2 coatings for smart thermochromic windows with active solar control, J. Nanosci. Nanotechno. 11(2011): 9042-9045.

DOI: 10.1166/jnn.2011.3486

Google Scholar

[12] T.H. Yang, S. Mal, C. Jin, R.J. Narayan, J. Narayan, Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications, Appl. Phys. Lett. 98(2011): 022105.

DOI: 10.1063/1.3541649

Google Scholar

[13] L.T. Kang, Y.F. Gao, H.J. Luo, A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties, ACS Appl. Mater. Inter. 1(2009): 2211-2218.

DOI: 10.1021/am900375k

Google Scholar

[14] Z.T. Zhang, Y.F. Gao, L.T. Kang, J. Du, H.J. Luo, Effects of a TiO2 buffer layer on solution-deposited VO2 films: enhanced oxidization durability, J. Phys. Chem. C 114 (2010): 22214-22220.

DOI: 10.1021/jp108449m

Google Scholar

[15] C. Yu, K. Yang, Q. Shu, J.C. Yu, F. Cao, X. Li, X. Zhou, Preparation, characterization and photocatalytic performance of Mo-doped ZnO photocatalysts, Sci. China Chem. 55(2012): 1802-1810.

DOI: 10.1007/s11426-012-4721-8

Google Scholar

[16] M. Pan, H.M. Zhong, S.W. Wang, J. Liu, Z.F. Li, X.S. Chen, W. Lu, Properties of VO2 thin film prepared with precursor VO(acac)2, J. Cryst Growth 265(2004): 121-126.

DOI: 10.1016/j.jcrysgro.2003.12.065

Google Scholar

[17] T.D. Manning, I. P. Parkin, C. Blackman, U. Qureshi, APCVD of thermochromic vanadium dioxide thin films - solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2: SnO2, J. Mater. Chem. 15(2005): 4560-4566.

DOI: 10.1039/b510552h

Google Scholar

[18] C.J. Patridge, L. Whittaker, B. Ravel, S. Banerjee, Elucidating the influence of local structure perturbations on the metal-insulator transitions of V1-xMoxO2 nanowires: mechanistic insights from an X-ray absorption spectroscopy study, J. Phys. Chem. C 116(2012): 3728-3736.

DOI: 10.1021/jp2091335

Google Scholar

[19] J.Z. Yan, Y. Zhang, W.X. Huang, M.J. Tu, Effect of Mo-W co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film, Thin Solid Films 516(2008): 8554-8558.

DOI: 10.1016/j.tsf.2008.05.021

Google Scholar

[20] Y.F. Gao, S.B. Wang, L.T. Kang, H.J. Luo, L. Dai, C.X. Cao, Y.L. Liu, Z. Chen, M. Kanehira, Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control, Energy Environ. Sci. 5(2012): 8234-8237.

DOI: 10.1039/c2ee02803d

Google Scholar

[21] Y.J. Xu, W. X. Huang, Q.W. Shi, Y. Zhang, L.W. Song, Y.X. Zhang, Synthesis and properties of Mo and W ions co-doped porous nano-structured VO2 films by sol-gel process, J Sol-Gel Sci. Techn. 64(2012): 493-499.

DOI: 10.1007/s10971-012-2881-9

Google Scholar

[22] E.U. Donev, R. Lopez, L.C. Feldman, R.F. Haglund, Confocal Raman microscopy across the metal-insulator rransition of single vanadium dioxide nanoparticles, Nano Lett. 9(2009): 702-706.

DOI: 10.1021/nl8031839

Google Scholar

[23] X.F. Xu, X.F. He, H.Y. Wang, Q.J. Gu, S.X. Shi, H.Z. Xing, C.R. Wang, J. Zhang, X.S. Chen, J.H. Chu, The extremely narrow hysteresis width of phase transition in nanocrystalline VO2 thin films with the flake grain structures, Appl. Surf. Sci. 261(2012): 83-87.

DOI: 10.1016/j.apsusc.2012.07.098

Google Scholar