Properties of Low Temperature Fired Ferroelectric/Ferromagnetic Composite Materials

Article Preview

Abstract:

In this paper, Ni0.60Cu0.24Zn0.16Fe2O4/BaTiO3 composites of BaTiO3 (BT)/NiCuZn (NCZ) with mass ratios (x) equal to 5%, 10%, 15% or 20% were synthesised by a conventional solid-state reaction method and sintered at 900oC to adapt to low temperature co-fired ceramic technology. X-ray diffraction results showed that the composites were composed of BT and NCZ phases. The microstructures of the sintered composite materials were observed and analysed using scanning electron microscopy. The dielectric and magnetic properties of the composites were improved effectively with increasing BaTiO3 content. The influences of different compositions on the electromagnetic properties of the composites were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

313-316

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Eerenstein, N. D. Mathur and J. F. Scott: Nature (London), 2006, 442, 759–765.

Google Scholar

[2] J. V. Mantese, A. L. Micheli, D. F. Dungan, R. G. Geyer, J. Baker-Jarvis and J. Grosvenor: J. Appl. Phys., 1996, 79, 1655–1660.

Google Scholar

[3] J. H. Shen, Y. Bai, J. Zhou, L. T. Li: J. Am. Ceram. Soc., 2005, 88, 3440–3443.

Google Scholar

[4] G. Srinivasan, E. T. Rasmussen and R. Hayes: Phys. Rev. B, 2003, 67, 014418.

Google Scholar

[5] Y.-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodríguez, A. Scholl, S. X. Wang and R. Ramesh: Nat. Mater., 2008, 7, 478-482.

DOI: 10.1038/nmat2184

Google Scholar

[6] S. Sahoo, S. Polisetty, C.G. Duan, S. S. Jaswal, E. Y. Tsymbal and C. Binek: Phys. Rev. B, 2007, 76, 092108.

Google Scholar

[7] S. Q. Ren, L. Q. Weng, S.H. Song, F. Li, J.G. Wan and M. Zeng: J. Mater. Sci., 2005, 40, 4375–4378.

Google Scholar

[8] A. Testino, L. Mitoseriu, V. Buscaglia, M. T. Buscaglia, I. Pallecchi, A. S. Albuquerque, V. Calzona, D. Marré, A. S. Siri and P. Nanni: J. Eur. Ceram. Soc., 2006, 26, 3031–3036.

DOI: 10.1016/j.jeurceramsoc.2006.02.022

Google Scholar

[9] J. de Frutos, J. A. Matutues-Aquino, F. Cebollada, M. E. Botello-Zubiate, E. Menéndez, V. Corral-Flores, F. J. Jiménez and A. M. González: J. Eur. Ceram. Soc., 2007, 27, 3663–3666.

DOI: 10.1016/j.jeurceramsoc.2007.02.084

Google Scholar

[10] D. R. Patil, S. A. Lokare, S. S. Chougule and B. K. Chougule: Physica B, 2007, 400, 77–82.

DOI: 10.1016/j.physb.2007.06.019

Google Scholar

[11] A. S. Albuquerque, J. D. Ardisson, W. A. A. Macedo and M. C. M. Alves: J. Appl. Phys., 2000, 87, 4352–4357.

Google Scholar

[12] N. H. Hong, J. Sakai, N. Poirot and V. Brizé: Phys. Rev. B, 2006, 73, 132404.

Google Scholar

[13] J. Maxwell: Electricity and magnetism. Oxford, Clarenden Press, 1873.

Google Scholar

[14] K. Wagner: Ann. Phys. Leipzig, 1913, 40, 817–855.

Google Scholar

[15] C. G. Koops: Phys. Rev., 1951, 83, 121–124.

Google Scholar

[16] B. K. Kunar and G. P. Srivastava: J. Appl. Phys., 1994, 75, 6115–6117.

Google Scholar