[1]
Y. Igarashi, S. Okada, Observation and analysis of the nucleus of spheroidal graphite in magnesium-treated ductile iron, Int. J. Cast Metals res., 1998. Vol. 11, pp.83-88.
DOI: 10.1080/13640461.1998.11819261
Google Scholar
[2]
Y. Igarashi, S. Okada, Nucleus of various shapes of graphite in Ca, RE and Mg-Ti treated irons, J. Jap. Foundry Eng. Society, 1999, vol. 71, pp.745-751.
Google Scholar
[3]
H. nakae, Y. Igarashi, Y. Ono, Heterogeneous nucleus of spheroidal graphite and mechanism of spheroidal graphite formation, J. Jap. Foundry Eng. Society, 2001, vol. 73, pp.111-11.
Google Scholar
[4]
H. M. Muhmond and H. Fredriksson, Relationship between inoculants and the morphologies of MnS and graphite in gray cast iron, Metall Mater Trans B, 2013, vol. 44, n. 2, pp.283-298.
DOI: 10.1007/s11663-012-9768-6
Google Scholar
[5]
J.P. Sadocha, J.E. Gruzleski, in: B. Lux, I. Minkoff, F. Mollard (Eds. ), The Metallurgy of Cast Iron, Georgi Publjishing Co., St. Saphorin, Switzerland, 1974, p.443.
Google Scholar
[6]
J. E. Gruzleski, On the growth of spherolytic graphite in nodular cast iron Carbon, 1975, vol. 13, pp.167-173.
DOI: 10.1016/0008-6223(75)90227-4
Google Scholar
[7]
D. D. Double, A. Helawell, The nucleation and growth of graphite-The modification of cast iron Acta Metall. Mater., 1995, vol. 43, n. 6, pp.2435-2442.
DOI: 10.1016/0956-7151(94)00416-1
Google Scholar
[8]
W. C. Johnson and H. B. Smartt, The role of interphase boundary adsorption in the formation of spheroidal graphite in cast iron Met. Trans. A, 1977, vol. 8A, pp.553-65.
DOI: 10.1007/bf02676976
Google Scholar
[9]
A. Velichko, F. Mucklich, Quantitative 3D characterization of graphite morphology in cast iron-correction between processing, microstructure and properties Int. J. mat. Res., 2009, vol. 100, n. 8, pp.1031-1037.
DOI: 10.3139/146.110148
Google Scholar
[10]
A. Hatton, M. Engstler, P. Leibenguth, F. Mücklich, Characterization of Graphite Crystal Structure and Growth Mechanisms Using FIB and 3D Image Analysis Adv. Eng. Mater., 2011, vol. 13, n. 3, pp.136-144.
DOI: 10.1002/adem.201000234
Google Scholar
[11]
G. W. Chang, J. S. Wang, J. Z Wang, Q. G. Xue, D. Q. Zhou, D. Q. Cang, Study on the mechanism of graphitization in molten cast iron promoted by electro pulse discharge Acta Metall. Sinica (English letters), 2004, vol. 17, n. 6, pp.790-794.
Google Scholar
[12]
S. E. Franklin, R. A. Stark, Application of secondary ion mass spectroscopy to study of graphite morphology in cast iron Metal Sci., 1984, vol. 18, pp.187-200.
DOI: 10.1179/030634584790420186
Google Scholar
[13]
E. Hofmann, G. Wolf, Reproducible production of compacted graphite cast iron when using an improved e. m. f. measuring technique Giessereiforschung, 2001, vol. 53, n. 4, pp.131-151.
Google Scholar
[14]
T. Elbel, J. Senberger, A. Zadera, J. Hampl, Behaviour of oxygen in cast irons Archives of mater. Sci. and Eng., 2008, vol. 33, n. 2, pp.111-116.
Google Scholar
[15]
Ellingham diagram webpage tool, Energy of formation of oxides/sulfides and nitrides http: /www. engr. sjsu. edu/ellingham/, yr. (2013).
Google Scholar
[16]
E.A. Brandes, G.B. Brook, Energy of formation of sulfides, Smithells Metals Reference Book, 7th ed:, Butterworth-Heinemann Ltd., Oxford, England, 1992, p.8/1–8/51.
Google Scholar