Formation of the Surface Layer with Improved Tribological Properties on Austenitic Stainless Steel by Alloying with REE Using HIPPB

Article Preview

Abstract:

Austenitic stainless steels with their very good corrosion resistance are used in industrial applications nuclear and petrochemical industries, pulp and paper chemical, food and chemical processing, biomedical industries and others. But poor tribological and mechanical properties of austenitic stainless steels limit their applications in engineering fields. AISI 316L steel was subjected to transient treatment using high intensity pulsed plasma beams HIPPB. The plasma pulses contained both ions/atoms of electrodes material: Ce, La or (Ce+La) and those of working gas. The pulse energy densities (3.0 J/cm2) were sufficient to melt the near surface layer of steel and introduce REE to the melted material. Heating and cooling processes were of non-equilibrium type.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

479-484

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Piekoszewski, Z. Werner, W. Szymczyk, Application of high intensity pulsed ion and plasma beams in modification of materials, Vacuum 63 (2001) 475-581.

DOI: 10.1016/s0042-207x(01)00224-x

Google Scholar

[2] A. Pereira, P. Delaporte, M. Sentis, W. Marine, A. Basillais, A.L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, T. Sauvage, Laser treatment of a steel surface in ambient air, Thin Solid Films 453-454 (2004) 16-21.

DOI: 10.1016/j.tsf.2003.11.072

Google Scholar

[3] B. Sartowska, J. Piekoszewski, L. Waliś, J. Senatorski, J. Stanisławski, L. Nowicki, R. Ratajczak, et al., Phase composition and properties of unalloyed steels surfaces modified by intense plasma pulses with various reactive gas fluencies, Plasma Process Polym. 4 (2007).

DOI: 10.1002/ppap.200730807

Google Scholar

[4] X. Wang, M.K. Lei, J.S. Zhang, Surface modification of 316L stainless steel with high-intensity pulsed ion beams, Surface Coatings Technology 201 (2007) 5884-5890.

DOI: 10.1016/j.surfcoat.2006.10.040

Google Scholar

[5] C.M. Abreu, M.J. Cristobal, X.R. Novoa, G. Pena, M.C. Perez, R.J. Rodriguez, Modification of the stainless steels passive film induced by cerium implantation, Surface Coatings and Technology 158 (1) (2002) 582-587.

DOI: 10.1016/s0257-8972(02)00312-2

Google Scholar

[6] D. Cleugh, C. Blawert, J. Steinbach, H. Ferkel, B.L. Mordike, T. Bell, Effects of rare earth additions on nitriding of EN40B by plasma immersion ion implantation, Surface and Coating Technology 142-144 (2001) 392- 396.

DOI: 10.1016/s0257-8972(01)01245-2

Google Scholar

[7] D.E. Alman, P.D. Jablonski, Effect of minor elements and a Ce surface treatment on the oxidation behaviour of an Fe-22Cr-0. 5Mn (Crofer 22 APU) ferritic stainless steel, International Journal of Hydrogen Energy 32 (2007) 3743-3753.

DOI: 10.1016/j.ijhydene.2006.08.032

Google Scholar

[8] F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, S. Perrir, Effect of yttrium addition by sol-gel coating and ion implantation on high temperature oxidation behaviour of the 304 steel. Applied Surface Science 199 (2002) 107-122.

DOI: 10.1016/s0169-4332(02)00566-4

Google Scholar

[9] J. Piekoszewski, B. Sartowska, M. Barlak, P. Konarski, L. Dąbrowski, et al., Improvement of high temperature oxidation resistance of AISI 316L stainless steel by incorporation of Ce-La elements using intense pulses plasma beams. Surface & Coatings Technology 206 (2011).

DOI: 10.1016/j.surfcoat.2011.03.104

Google Scholar

[10] X.H. Cheng, C.Z. Xie, Effect of rare earth elements on the erosion resistance of nitrided 40Cr steel, Wear 254 (2003) 415-420.

DOI: 10.1016/s0043-1648(03)00018-8

Google Scholar

[11] H. Liu, M.F. Yan, D.L. Wu, Microstructure and mechanical properties of 17-4PH steel plasma nitrocarburized with and without rare earths addition, Journal of Materials Processing Technology 210 (2010) 784-790.

DOI: 10.1016/j.jmatprotec.2010.01.009

Google Scholar

[12] Z. Werner, J. Piekoszewski, W. Szymczyk, Generation of high intensity pulsed ion and plasma beams for material processing, Vacuum 63 (2001) 701-708.

DOI: 10.1016/s0042-207x(01)00261-5

Google Scholar

[13] J. Langner, J. Piekoszewski, Z. Werner, V.I. Tereshin, V.V. Chebotarev, I. Garkusha, L. Waliś, B. Sartowska, et al., Surface modification of constructional steels by irradiation with high intensity pulsed nitrogen plasma beams, Surface and Coatings Technology 128-129 (2000).

DOI: 10.1016/s0257-8972(00)00616-2

Google Scholar

[14] B. Sartowska, J. Piekoszewski, L. Waliś, M. Barlak, Surface morphology of unalloyed steels remelted with intense plasma pulses, Journal of Microscopy 237 (2010) 370-373.

DOI: 10.1111/j.1365-2818.2009.03262.x

Google Scholar

[15] G. Feng, L. Qin, Existing Forms of Lanthanum in Purity Steels, Journal of Rare Earths 24 (1) Suppl. 1 (2006) 405-408.

DOI: 10.1016/s1002-0721(07)60413-x

Google Scholar