Characterization of the Solidifying Microstructure in Ti60(NixCu40-x)40 Alloys

Article Preview

Abstract:

Ti60(NixCu40-x)40 x = 5 - 40 at% ternary alloys were prepared by arc-melting followed by a centrifugal casting into a wedge-shaped copper mould in order to examine glass forming of these compositions. Microstructure of the master alloys and wedge-shaped samples were studied. Among the master alloys, which solidified under non-equilibrium conditions, the sample with 15 at% Ni content displayed clear eutectic structure and its wedge-shaped sample had the finest structure but still crystalline. Microstructure of the other compositions was far from amorphous state.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

491-496

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.V. Louzguine, A. Inoue, Nanocrystallization of Ti-Ni-Cu-Sn amorphous alloys, Scripta Materialia 43 (2000) 371-376.

DOI: 10.1016/s1359-6462(00)00425-5

Google Scholar

[2] P. Ochin, V. Kolomytsev, A. Pasko, P. Vermaut, F. Prima, R. Portier, Phase transformations in rapidly solidified (Ti-Zr)50(Ni-Cu-Sn)50 alloys, Materials Science and Engineering A 438-440 (2006) 630-633.

DOI: 10.1016/j.msea.2006.02.068

Google Scholar

[3] T. Zhang, A. Inoue, Ti-based amorphous alloys with a large supercooled liquid region, Materials Science and Engineering A 304-306 (2001) 771-774.

DOI: 10.1016/s0921-5093(00)01592-6

Google Scholar

[4] A. Pasko, V. Kolomytsev, P. Vermaut, F. Prima, R. Portier, P. Ochin, A. Sezonenko, Crystallization of the amorphous phase and martensitic transformations in multicomponent (Ti, Hf, Zr)(Ni, Cu)-based alloys, Journal of Non-Crystalline Solids 353 (2007).

DOI: 10.1016/j.jnoncrysol.2007.06.020

Google Scholar

[5] Pan Gong, Ke-Fu Yao, Xin Wang, Yang Shao, Centimeter-sized Ti-based bulk metallic glass with high specific strength, Progress in Natural Science: Materials International 22 No. 5 (2012) 401-406.

DOI: 10.1016/j.pnsc.2012.10.007

Google Scholar

[6] R. Ristic, E. Babic, M. Stubicar, A. Kursumovic, J.R. Cooper, I.A. Figueroa, H.A. Davies, I. Todd, L.K. Varga, I. Bakonyi, Journal of Non-Crystalline Solids 357 (2011) 2949-2953.

DOI: 10.1016/j.jnoncrysol.2011.03.038

Google Scholar

[7] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, T. Masumoto, Ti-based amorphous alloys with a wide supercooled liquid region, Materials Letters 61 (2007) 2851-2854.

DOI: 10.1016/j.matlet.2007.03.048

Google Scholar

[8] K.B. Kim, P.J. Warren, B. Cantor, Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)-(Ni, Cu, Ag)-Al alloys, Journal of Non-Crystalline Solids 317 (2003) 17-22.

DOI: 10.1016/s0022-3093(02)02002-1

Google Scholar

[9] A. Jamil, T. Kousksou, Y. Zeraouli, J. -P. Dumas, Liquidus temperatures determination of the dispersed binary system, Thermochimica Acta 471 (2008) 1-6.

DOI: 10.1016/j.tca.2008.02.003

Google Scholar

[10] Julius C. Schuster, Gabriele Cacciamani, Copper-Nickel-Titanium, Landolt-Börnstein New Series IV/11A4, 266-283.

Google Scholar