Amorphization of CuZr Based Alloy Powders by Mechanical Milling

Article Preview

Abstract:

The effect of nickel addition was studied in the CuZr system creating alloys with near eutectic composition. Nickel and aluminum have been regarded as useful elements to improve the plasticity, thermal stability of the CuZr-based amorphous alloys. Cu49Zr45Al6 and (Cu49Zr45Al6)95Ni5 were selected because of the good glass-forming ability. After 15 h of milling the structure of the powders was amorphous based on the XRD analysis. By adding nickel, the crystallization temperature (Tx) shifted to higher temperatures compared to CuZrAl alloy. The value of supercooled liquid region was 64 K, which means CuZrAl has a comparatively high glass forming ability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

509-514

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.M. Lee, J.H. Sun, D.H. Kang, S.Y. Shin, G. Welsch, C.H. Lee, A deep eutectic point in quaternary Zr-Ti-Ni-Cu system and bulk metallic glass formation near eutectic point, Intermetallics, 21 (2012) 67-74.

DOI: 10.1016/j.intermet.2011.09.006

Google Scholar

[2] Y.F. Sun, H. Fujii, N. Tsuji, Y. Todaka, M. Umemoto, Fabrication of ZrAlNiCu bulk metallic glass composites containing pure copper particles by high-pressure torsion, J. Alloys Compd. 492 (2010) 149–152.

DOI: 10.1016/j.jallcom.2009.11.135

Google Scholar

[3] H.S. Wang, Y.Z. Su, J. S.C. Jang, H.G. Chen, A comparison of crystallization behaviors of laser spot welded Zr-Cu-Ag-Al and Zr-Cu-Ni-Al bulk metallic glasses, Mat. Chem. Phys. 139 (2013) 215-219.

DOI: 10.1016/j.matchemphys.2013.01.025

Google Scholar

[4] M. Yan, J. Zou, J. Shen, Cooling rate effects on the microstructure and phase formation in Zr51Cu20. 7Ni12Al16. 3 bulk metallic glass, Sci. Tech. Adv. Mat. 7 (2006) 806–811.

Google Scholar

[5] L.P. Déo, M.A.B. Mendes, A.M.S. Costa, N.D. Campos Neto, M.F. de Oliveira, Applying a new criterion to predict glass forming alloys in the Zr–Ni–Cu ternary system, Journal of Alloys and Compounds 553 (2013) 212–215.

DOI: 10.1016/j.jallcom.2012.11.123

Google Scholar

[6] H. Shao, Y. Xu, B. Shi, C. Yu, H. Hahn, H. Gleiter, J. Li, High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling, Journal of Alloys and Compounds 548 (2013) 77–81.

DOI: 10.1016/j.jallcom.2012.08.132

Google Scholar

[7] J. Dutkiewicz, L. Jaworska, W. Maziarz, T. Czeppe, M. Lejkowska, M. Kubícek, M. Pastrnák, Consoldiation of amorphous ball-milled Zr-Cu-Al and Zr-Ni-Ti-Cu powders, J. Alloys Compd. 434–435 (2007) 333–335.

DOI: 10.1016/j.jallcom.2006.08.201

Google Scholar

[8] H. Kishimura, H. Matsumoto, Fabrication of Ti-Cu-Ni-Al amorphous alloys by mechanical alloying and mechanical milling, J. Alloys Compd. 509 (2011) 4386–4389.

DOI: 10.1016/j.jallcom.2010.12.181

Google Scholar

[9] J. Bhatt, B.S. Murty, On the conditions for the synthesis of bulk metallic glasses by mechanical alloying, J. Alloys Compd. 459 (2008) 135-141.

DOI: 10.1016/j.jallcom.2007.04.242

Google Scholar

[10] D. Oleszak, T. Kulik, Influence of Sn Addition on the Amorphization and Thermal Stability of CuTiZrNi Powders Processed by Mechanical Alloying, Mater. Sci. Forum 636-637 (2010) 917-921.

DOI: 10.4028/www.scientific.net/msf.636-637.917

Google Scholar

[11] C. Suryanarayana, Mechanical alloying and milling, Prog. Mat. Sci. 46 (2001) 1-184.

Google Scholar

[12] M.E. Siegrist, M. Siegfried, J.F. Löffler, High-purity amorphous Zr52. 5Cu17. 9Ni14. 6Al10Ti5 powders via mechanical amorphization of crystalline pre-alloys, Mater. Sci. Eng. A 418 (2006) 236–240.

DOI: 10.1016/j.msea.2005.11.024

Google Scholar

[13] Y.H. Zhao, Thermodynamic model for solid-state amorphization of pure elements by mechanical-milling, J. Non-Cryst. Solids 352 (2006) 5578–5585.

DOI: 10.1016/j.jnoncrysol.2006.09.021

Google Scholar

[14] M. Seidel, J. Eckert, H.D. Bauer, L. Schultz, Mechanical Alloyed Zr-Based Metallic Glasses with Significant Supercooled Liquid Region, Mat. Sci. Forum 225–227 (1996) 119–124.

DOI: 10.4028/www.scientific.net/msf.225-227.119

Google Scholar

[15] Z. Bian, G.L. Chen, G. He, X.D. Hui, Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing Mater. Sci. Eng. A 316 (2001) 135–144.

DOI: 10.1016/s0921-5093(01)01260-6

Google Scholar

[16] K. Tomolya, D. Janovszky, T. Janvari, A. Sycheva, F. Tranta, J. Solyom, T. Ferenczi, A. Roosz, Consolidation of Cu58Zr42 amorphous/nanocrystalline powders by PM, J. Alloys Compd. 536 (2012) S154-S158.

DOI: 10.1016/j.jallcom.2011.12.107

Google Scholar

[17] G. Körösy, K. Tomolya, D. Janovszky, J. Sólyom, Evaluation of XRD analysis of amorphous alloys, Mater. Sci. Forum 729 (2013) 419-423.

DOI: 10.4028/www.scientific.net/msf.729.419

Google Scholar

[18] G.S. Firstov, Yu.N. Koval, A.N. Timoshevskii, J. Van Humbeeck, Dopov. Nats. Akad. Nauk. Ukr. (2010) 103-109 (ICSD#: 167595).

Google Scholar

[19] R. Meyer zu Reckendorf, P.C. Schmidt, A. Weiss, Reaction of Hydrogen with the Heusler-Type Phases Cu2TiAl and Cu2ZrAl, Zeitschrift für Physikalische Chemie 163 (1989) 103-108 (ICSD#: 656062).

DOI: 10.1524/zpch.1989.163.part_1.0103

Google Scholar

[20] Y, Yokoyama, H. Inoue, K. Fukaura, A. Inoue, Relationship between the liquidus surface and the structure of Zr-Cu-Al bulk amorphous alloys, Mat. Trans. 43 (2002) 575-579.

DOI: 10.2320/matertrans.43.575

Google Scholar