[1]
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.
DOI: 10.1016/s1359-6454(99)00300-6
Google Scholar
[2]
C.L. Chiang, J.P. Chua, C.T. Loa, T.G. Nieh, Z.X. Wang, W.H. Wang, Homogeneous plastic deformation in a Cu-based bulk amorphous alloy, Intermetallics 12 (2004) 1057-1061.
DOI: 10.1016/j.intermet.2004.04.012
Google Scholar
[3]
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behaviour of amorphous alloys, Acta Mater. 55 (2007) 4067-4109.
DOI: 10.1016/j.actamat.2007.01.052
Google Scholar
[4]
S.V. Madge, T. Wada, D.V. Louzguine-Luzgin, A.L. Greer, A. Inoue, Oxygen embrittlement in a Cu–Hf–Al bulk metallic glass, Scripta Mater. 61 (5) (2009) 540-543.
DOI: 10.1016/j.scriptamat.2009.05.018
Google Scholar
[5]
J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, K. Hono, Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass, Scripta Mater. 53(2) (2005) 165-169.
DOI: 10.1016/j.scriptamat.2005.03.046
Google Scholar
[6]
L. Hu, F. Ye, Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass, J. Alloys Compd. 557 (2013) 160-165.
DOI: 10.1016/j.jallcom.2012.12.158
Google Scholar
[7]
J. He, N. Mattern, J. Tan, J.Z. Zhao, I. Kaban, Z. Wang, L. Ratke, D.H. Kim, W.T. Kim, J. Eckert, A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution, Acta Mater. 61(2013).
DOI: 10.1016/j.actamat.2012.12.031
Google Scholar
[8]
C.N. Kuo, J.C. Huang, X.H. Du, X.J. Liu, T.G. Nieh, Comparison of mechanical response in CuZrAl-V and CuZrAl-Co bulk metallic glass composites, J. Alloys Compd. xxx (2013) xxx–xxx http: /dx. doi. org/10. 1016/j. jallcom. 2013. 01. 097.
DOI: 10.1016/j.jallcom.2013.01.097
Google Scholar
[9]
A. Castellero, D.H. Kang, I.H. Jung, G. Angella, M. Vedani, M. Baricco, Rapid solidification of silver-rich Ag-Cu-Zr alloys, J. Alloys Compd. 536 (2012) S148-S153.
DOI: 10.1016/j.jallcom.2011.12.089
Google Scholar
[10]
D. Janovszky, K. Tomolya, A. Sycheva, G. Kaptay, Stable Miscibility Gap in Liquid Cu-Zr-Ag Ternary Alloy J. Alloy Compd. 541 (2012) 353-358.
DOI: 10.1016/j.jallcom.2012.07.015
Google Scholar
[11]
S.V. Ketov, L.V. Louzguina-Luzgina, A. Yu. Churyumov, A.N. Solonin, D.B. Miracle, D.V. Louzguine-Luzgin, A. Inoue, Glass-formation and crystallization processes in Ag-Y-Cu alloys, J. Non-Crystalline Solids 358 (2012) 1759-1763.
DOI: 10.1016/j.jnoncrysol.2012.05.012
Google Scholar
[12]
U. Saeed, H. Flandorfer, H. Ipser, Lead-free solders: Enthalpies of mixing of liquid alloys in the Ag-Ni and Ag-Ni-Sn systems, J. Mater. Res. 21 (2006) 1294-1304.
DOI: 10.1557/jmr.2006.0157
Google Scholar
[13]
T. Iida, R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993, 288 pp.
Google Scholar
[14]
G. Kaptay, A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals, Mater Sci Eng A, 495 (2008) 19-26.
DOI: 10.1016/j.msea.2007.10.112
Google Scholar
[15]
W. Zhang, Q. Zhang, A. Inoue, Formation and thermal stability of new Zr-Cu-based bulk glassy alloys with unusual glass-forming ability, Journal of Alloys and Compounds 483 (2009) 112-115.
DOI: 10.1016/j.jallcom.2008.07.152
Google Scholar