Designing Amorphous/Crystalline Composites by Liquid-Liquid Phase Separation

Article Preview

Abstract:

The Cu-Zr-Ag system is characterized by a miscibility gap. The liquid separates into Ag-rich and Cu-Zr rich liquids. Yttrium was added to the Cu-Zr-Ag and Cu-Zr-Ag-Al systems and its influence on liquid immiscibility was studied. This alloying element has been chosen to check the effect of the heat of mixing between silver and the given element. In the case of Ag-Y system it is highly negative (-29 kJ/mol). The liquid becomes immiscible in the Cu-Zr-Ag-Y system. To the effect of Y addition the quaternary liquid decomposed into Ag-Y rich and Cu-Zr rich liquids. The Y addition increased the field of miscibility gap. An amorphous/crystalline composite with 6 mm thickness has been successfully produced by liquid-liquid separation based on preliminary calculation of its composition. The matrix was Cu38Zr48Al6Ag8 and the crystalline phases were Ag-Y rich separate spherical droplets.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

473-478

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[2] C.L. Chiang, J.P. Chua, C.T. Loa, T.G. Nieh, Z.X. Wang, W.H. Wang, Homogeneous plastic deformation in a Cu-based bulk amorphous alloy, Intermetallics 12 (2004) 1057-1061.

DOI: 10.1016/j.intermet.2004.04.012

Google Scholar

[3] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behaviour of amorphous alloys, Acta Mater. 55 (2007) 4067-4109.

DOI: 10.1016/j.actamat.2007.01.052

Google Scholar

[4] S.V. Madge, T. Wada, D.V. Louzguine-Luzgin, A.L. Greer, A. Inoue, Oxygen embrittlement in a Cu–Hf–Al bulk metallic glass, Scripta Mater. 61 (5) (2009) 540-543.

DOI: 10.1016/j.scriptamat.2009.05.018

Google Scholar

[5] J.C. Oh, T. Ohkubo, Y.C. Kim, E. Fleury, K. Hono, Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass, Scripta Mater. 53(2) (2005) 165-169.

DOI: 10.1016/j.scriptamat.2005.03.046

Google Scholar

[6] L. Hu, F. Ye, Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass, J. Alloys Compd. 557 (2013) 160-165.

DOI: 10.1016/j.jallcom.2012.12.158

Google Scholar

[7] J. He, N. Mattern, J. Tan, J.Z. Zhao, I. Kaban, Z. Wang, L. Ratke, D.H. Kim, W.T. Kim, J. Eckert, A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution, Acta Mater. 61(2013).

DOI: 10.1016/j.actamat.2012.12.031

Google Scholar

[8] C.N. Kuo, J.C. Huang, X.H. Du, X.J. Liu, T.G. Nieh, Comparison of mechanical response in CuZrAl-V and CuZrAl-Co bulk metallic glass composites, J. Alloys Compd. xxx (2013) xxx–xxx http: /dx. doi. org/10. 1016/j. jallcom. 2013. 01. 097.

DOI: 10.1016/j.jallcom.2013.01.097

Google Scholar

[9] A. Castellero, D.H. Kang, I.H. Jung, G. Angella, M. Vedani, M. Baricco, Rapid solidification of silver-rich Ag-Cu-Zr alloys, J. Alloys Compd. 536 (2012) S148-S153.

DOI: 10.1016/j.jallcom.2011.12.089

Google Scholar

[10] D. Janovszky, K. Tomolya, A. Sycheva, G. Kaptay, Stable Miscibility Gap in Liquid Cu-Zr-Ag Ternary Alloy J. Alloy Compd. 541 (2012) 353-358.

DOI: 10.1016/j.jallcom.2012.07.015

Google Scholar

[11] S.V. Ketov, L.V. Louzguina-Luzgina, A. Yu. Churyumov, A.N. Solonin, D.B. Miracle, D.V. Louzguine-Luzgin, A. Inoue, Glass-formation and crystallization processes in Ag-Y-Cu alloys, J. Non-Crystalline Solids 358 (2012) 1759-1763.

DOI: 10.1016/j.jnoncrysol.2012.05.012

Google Scholar

[12] U. Saeed, H. Flandorfer, H. Ipser, Lead-free solders: Enthalpies of mixing of liquid alloys in the Ag-Ni and Ag-Ni-Sn systems, J. Mater. Res. 21 (2006) 1294-1304.

DOI: 10.1557/jmr.2006.0157

Google Scholar

[13] T. Iida, R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993, 288 pp.

Google Scholar

[14] G. Kaptay, A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals, Mater Sci Eng A, 495 (2008) 19-26.

DOI: 10.1016/j.msea.2007.10.112

Google Scholar

[15] W. Zhang, Q. Zhang, A. Inoue, Formation and thermal stability of new Zr-Cu-based bulk glassy alloys with unusual glass-forming ability, Journal of Alloys and Compounds 483 (2009) 112-115.

DOI: 10.1016/j.jallcom.2008.07.152

Google Scholar