Modeling of Surface and Size Effects on Various Shape of Spin-Crossover Nanoparticles

Article Preview

Abstract:

We performed of Monte Carlo simulations using Ising-like model on two-dimensional core/shell rectangular lattice L×2L for different sizes in order to study the effect of surface and size on the thermal behavior of spin-crossover nanoparticles. The surface effect is accounted for by constraining all the atoms situated in the boundary in the high-spin state as a result of the weak ligand-field prevailing in the coordination shell. This result is similar to square lattice of spin-crossover nanoparticles, and in agreement with experimental data. Such a non-trivial change is explained as due to the competition between the negative pressures induced the high spin state surface and the bulk properties. We also described the way in which the usual occurrence condition of the first-order transition has to be adapted to the nanoscale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-83

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Coronado, J.R.G. Mascarós, M.M. Capilla, J.G. Martínez, P. P. Ibanez, Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, Advan. Mat. 19 (2007) 1359-1361.

DOI: 10.1002/adma.200700559

Google Scholar

[2] T. Forestier, S. Mornet, N. Daro, T. Nishihara, S. Mouri, K. Tanaka, O. Fouché, E. Freysz, J.F. Létard, Nanoparticles of iron(II) spin-crossover, Chem. Commun. (2008) 4327-4329.

DOI: 10.1039/b806347h

Google Scholar

[3] I. Boldog, A. B. Gaspar, V. Martinez, P.P. Ibanez, V. Ksenofontov, A. Bhattacharjee, P. Gutlich, J.A. Real, Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature, Angew. Chem. 120 (2008) 6533-6537.

DOI: 10.1002/ange.200801673

Google Scholar

[4] T. Forestier, A. Kaiba, S. Pechev, D. Denux, P. Guionneau, C. Etrillard, N. Daro, E. Freysz, J.F. Létard, Nanoparticles of [Fe(NH2-trz)3]Br2⋅3H2O (NH2-trz = 2-Amino-1,2,4-triazole) Prepared by the Reverse Micelle Technique: Influence of Particle and Coherent Domain Sizes on Spin-Crossover Properties, Chem. Europe. J. 15 (2009) 6122-6130.

DOI: 10.1002/chem.200900297

Google Scholar

[5] L. Catala, F. Volatron, D. Brinzei and T. Mallah, Functional Coordination Nanoparticles, Inorg. Chem. 48 (2009) 3360-3370.

DOI: 10.1021/ic8012574

Google Scholar

[6] J.R. Galan Mascaros, E. Coronado, A.F. Aliaga, M.M. Capilla, E.P. Cienfuegos, M. Ceolin, Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles, Inorg. Chem. 49 (2010) 5706-5714.

DOI: 10.1021/ic100751a

Google Scholar

[7] C. Thibault, G. Molnar, L. Salmon, A. Bousseksou, C. Vieu, Soft Lithographic Patterning of Spin Crossover Nanoparticles, Langmuir 26 (2010) 1557-1560.

DOI: 10.1021/la904162m

Google Scholar

[8] V. Martinez, I. Boldog, A.B. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, and J.A. Real, Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers, Chem. Mater. 22 (2010) 4271-4281.

DOI: 10.1021/cm101022u

Google Scholar

[9] A. Tissot, J.F. Bardeau, E. Rivière, F. Brisset, M.L. Boillot, Thermo- and photoswitchable spin-crossover nanoparticles of an iron(II) complex trapped in transparent silica thin films, Dalton Trans. 39 (2010) 7806-7812.

DOI: 10.1039/c0dt00321b

Google Scholar

[10] J.A. Real, A.B. Gaspar, M.C. Muñoz, Thermal, pressure and light switchable spin-crossover materials, Dalton Trans. (2005) 2062-2079.

DOI: 10.1039/b501491c

Google Scholar

[11] S. Bonhommeau, G. Molnár, A. Galet, A. Zwick, J.A. Real, J.J. McGarvey, A. Bousseksou, One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature, Angew. Chem. Int. Ed. 44 (2005) 4069-4073.

DOI: 10.1002/anie.200500717

Google Scholar

[12] T. Kawamoto, S. Abe, Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model, Chem. Commun. (2005) 3933-3935.

DOI: 10.1039/b506643c

Google Scholar

[13] T. Kawamoto, S. Abe, Monte Carlo simulations of an Ising-like model for photoinduced spin-state switching in nanoparticles of transition metal complexes, J. Phys. Conf. Ser. 21 (2005) 56-60.

DOI: 10.1088/1742-6596/21/1/009

Google Scholar

[14] P. Gutlich, H.A. Goodwin, in Topics in current chemistry 233-235 Spin Crossover in Transition Metal Compounds I-III (Springer)

Google Scholar

[15] V. Wajnflasz, R. Pick, Transitions Low Spin – High Spin dans les Complexes de Fe2+, J. Phys. Colloq. (1971) 32 C191- C192.

DOI: 10.1051/jphyscol:1971127

Google Scholar

[16] K. Boukheddaden, I. Shteto, B. Hoo, F. Varret, Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach, Phys. Rev. B 62 (2000) 14796-14805.

DOI: 10.1103/physrevb.62.14796

Google Scholar

[17] F. Volatron, L. Catala, E. Rivière, A. Gloter, O. Stephan, T. Mallah, Spin-Crossover Coordination Nanoparticles, Inorg. Chem. 47 (2008) 6584-6586.

DOI: 10.1021/ic800803w

Google Scholar

[18] A. Muraoka, K. Boukheddaden, J. Linares, F. Varret, Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study, Phys. Rev. B 84 (2011) 054119.

DOI: 10.1103/physrevb.84.054119

Google Scholar

[19] Y. Rasa, F. Volatron, S. Moldovan, O. Ersen, V. Huc, C. Martini, F. Brisset, A. Gloter, O. Stephan, A. Bousseksou, L. Catala, T. Mallah, Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles, Chem. Commun. 47 (2011) 11501-11503.

DOI: 10.1039/c1cc14463d

Google Scholar

[20] K. Boukheddaden, J. Linares, R. Tanasa, C. Chong, Theoretical investigations on an axial next nearest neighbour Ising-like model for spin crossover solids: one- and two-step spin transitions, J. Phys. Cond. Mat. 19 (2007) 106201-106201.

DOI: 10.1088/0953-8984/19/10/106201

Google Scholar

[21] J. Jeftić, R. Hinek, Silvia C. Capelli, A. Hauser, Cooperativity in the Iron(II) Spin-Crossover Compound [Fe(ptz)6](PF6)2 under the Influence of External Pressure (ptz = 1-n-Propyltetrazole), Inorg. Chem. 36 (1997) 3080-3087.

DOI: 10.1021/ic961404o

Google Scholar

[22] H.C. Bolton, D.W.R. Gruen, Monte Carlo studies on small Ising systems, Phys. Rev. B. 15 (1977) 4544-4547.

DOI: 10.1103/physrevb.15.4544

Google Scholar

[23] C. Enachescu, J. Linares, F. Varret, Comparison of static and light-induced thermal hysteresis of a spin-crossover solid, in a mean-field approach, J. Phys. Condens, Matter. 13 (2001) 2481-2496.

DOI: 10.1088/0953-8984/13/11/307

Google Scholar

[24] N. Metroplice, A.W. Rosenlduth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21 (1953) 1087-1092.

DOI: 10.1063/1.1699114

Google Scholar