[1]
E. Coronado, J.R.G. Mascarós, M.M. Capilla, J.G. Martínez, P. P. Ibanez, Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, Advan. Mat. 19 (2007) 1359-1361.
DOI: 10.1002/adma.200700559
Google Scholar
[2]
T. Forestier, S. Mornet, N. Daro, T. Nishihara, S. Mouri, K. Tanaka, O. Fouché, E. Freysz, J.F. Létard, Nanoparticles of iron(II) spin-crossover, Chem. Commun. (2008) 4327-4329.
DOI: 10.1039/b806347h
Google Scholar
[3]
I. Boldog, A. B. Gaspar, V. Martinez, P.P. Ibanez, V. Ksenofontov, A. Bhattacharjee, P. Gutlich, J.A. Real, Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature, Angew. Chem. 120 (2008) 6533-6537.
DOI: 10.1002/ange.200801673
Google Scholar
[4]
T. Forestier, A. Kaiba, S. Pechev, D. Denux, P. Guionneau, C. Etrillard, N. Daro, E. Freysz, J.F. Létard, Nanoparticles of [Fe(NH2-trz)3]Br2⋅3H2O (NH2-trz = 2-Amino-1,2,4-triazole) Prepared by the Reverse Micelle Technique: Influence of Particle and Coherent Domain Sizes on Spin-Crossover Properties, Chem. Europe. J. 15 (2009) 6122-6130.
DOI: 10.1002/chem.200900297
Google Scholar
[5]
L. Catala, F. Volatron, D. Brinzei and T. Mallah, Functional Coordination Nanoparticles, Inorg. Chem. 48 (2009) 3360-3370.
DOI: 10.1021/ic8012574
Google Scholar
[6]
J.R. Galan Mascaros, E. Coronado, A.F. Aliaga, M.M. Capilla, E.P. Cienfuegos, M. Ceolin, Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles, Inorg. Chem. 49 (2010) 5706-5714.
DOI: 10.1021/ic100751a
Google Scholar
[7]
C. Thibault, G. Molnar, L. Salmon, A. Bousseksou, C. Vieu, Soft Lithographic Patterning of Spin Crossover Nanoparticles, Langmuir 26 (2010) 1557-1560.
DOI: 10.1021/la904162m
Google Scholar
[8]
V. Martinez, I. Boldog, A.B. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, and J.A. Real, Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers, Chem. Mater. 22 (2010) 4271-4281.
DOI: 10.1021/cm101022u
Google Scholar
[9]
A. Tissot, J.F. Bardeau, E. Rivière, F. Brisset, M.L. Boillot, Thermo- and photoswitchable spin-crossover nanoparticles of an iron(II) complex trapped in transparent silica thin films, Dalton Trans. 39 (2010) 7806-7812.
DOI: 10.1039/c0dt00321b
Google Scholar
[10]
J.A. Real, A.B. Gaspar, M.C. Muñoz, Thermal, pressure and light switchable spin-crossover materials, Dalton Trans. (2005) 2062-2079.
DOI: 10.1039/b501491c
Google Scholar
[11]
S. Bonhommeau, G. Molnár, A. Galet, A. Zwick, J.A. Real, J.J. McGarvey, A. Bousseksou, One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature, Angew. Chem. Int. Ed. 44 (2005) 4069-4073.
DOI: 10.1002/anie.200500717
Google Scholar
[12]
T. Kawamoto, S. Abe, Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model, Chem. Commun. (2005) 3933-3935.
DOI: 10.1039/b506643c
Google Scholar
[13]
T. Kawamoto, S. Abe, Monte Carlo simulations of an Ising-like model for photoinduced spin-state switching in nanoparticles of transition metal complexes, J. Phys. Conf. Ser. 21 (2005) 56-60.
DOI: 10.1088/1742-6596/21/1/009
Google Scholar
[14]
P. Gutlich, H.A. Goodwin, in Topics in current chemistry 233-235 Spin Crossover in Transition Metal Compounds I-III (Springer)
Google Scholar
[15]
V. Wajnflasz, R. Pick, Transitions Low Spin – High Spin dans les Complexes de Fe2+, J. Phys. Colloq. (1971) 32 C191- C192.
DOI: 10.1051/jphyscol:1971127
Google Scholar
[16]
K. Boukheddaden, I. Shteto, B. Hoo, F. Varret, Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach, Phys. Rev. B 62 (2000) 14796-14805.
DOI: 10.1103/physrevb.62.14796
Google Scholar
[17]
F. Volatron, L. Catala, E. Rivière, A. Gloter, O. Stephan, T. Mallah, Spin-Crossover Coordination Nanoparticles, Inorg. Chem. 47 (2008) 6584-6586.
DOI: 10.1021/ic800803w
Google Scholar
[18]
A. Muraoka, K. Boukheddaden, J. Linares, F. Varret, Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study, Phys. Rev. B 84 (2011) 054119.
DOI: 10.1103/physrevb.84.054119
Google Scholar
[19]
Y. Rasa, F. Volatron, S. Moldovan, O. Ersen, V. Huc, C. Martini, F. Brisset, A. Gloter, O. Stephan, A. Bousseksou, L. Catala, T. Mallah, Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles, Chem. Commun. 47 (2011) 11501-11503.
DOI: 10.1039/c1cc14463d
Google Scholar
[20]
K. Boukheddaden, J. Linares, R. Tanasa, C. Chong, Theoretical investigations on an axial next nearest neighbour Ising-like model for spin crossover solids: one- and two-step spin transitions, J. Phys. Cond. Mat. 19 (2007) 106201-106201.
DOI: 10.1088/0953-8984/19/10/106201
Google Scholar
[21]
J. Jeftić, R. Hinek, Silvia C. Capelli, A. Hauser, Cooperativity in the Iron(II) Spin-Crossover Compound [Fe(ptz)6](PF6)2 under the Influence of External Pressure (ptz = 1-n-Propyltetrazole), Inorg. Chem. 36 (1997) 3080-3087.
DOI: 10.1021/ic961404o
Google Scholar
[22]
H.C. Bolton, D.W.R. Gruen, Monte Carlo studies on small Ising systems, Phys. Rev. B. 15 (1977) 4544-4547.
DOI: 10.1103/physrevb.15.4544
Google Scholar
[23]
C. Enachescu, J. Linares, F. Varret, Comparison of static and light-induced thermal hysteresis of a spin-crossover solid, in a mean-field approach, J. Phys. Condens, Matter. 13 (2001) 2481-2496.
DOI: 10.1088/0953-8984/13/11/307
Google Scholar
[24]
N. Metroplice, A.W. Rosenlduth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21 (1953) 1087-1092.
DOI: 10.1063/1.1699114
Google Scholar