Carbon Nanotubes Functionalized by Nanoparticles of Platinum

Article Preview

Abstract:

Carbon nanotubes (CNT) based gas sensors have attracted interest due to their excellent properties. Several studies have reported changes in the CNT’s electrical properties when functionalized with platinum (Pt) nanoparticles. In this investigation, the vapor phase impregnation decomposition (VPID) method was employed to incorporate Pt nanoparticles on CNT. Both, Pt nanoparticles and CNT were characterized by high resolution transmission electron microscopy (HR-TEM). The sensitivity of sensors based on CNT doped with Pt, was evaluated with ozone molecules. TEM images showed low and heterogeneous distribution on the surface of carbon nanotubes. The gas evaluation of CNT-Pt sensor presents good and quick response to ozone molecules at different concentrations and temperatures. The best response was found to be at 120 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensor, Nanotechnology 19 (2008) 1-14.

DOI: 10.1088/0957-4484/19/33/332001

Google Scholar

[2] Y. Wang, J.T.W. Yeow, A review of carbon nanotubes-based gas sensors, J. Sensors (2009) 1-24.

Google Scholar

[3] M. Vesali, A. Khodadadi, Y. Mortazavi, O. Alizadeh, F. Pourfavaz, S. Mosadegh, Functionalization of carbon nanotubes using nitric acid oxidation and DBD plasma, World Acad. Sci. Eng. Technol. 49 (2009) 177-179.

Google Scholar

[4] A. Hirsch, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. 41 (2002) 1853-1859.

DOI: 10.1002/1521-3773(20020603)41:11<1853::aid-anie1853>3.0.co;2-n

Google Scholar

[5] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833-840

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[6] G. Jiménez, J. Riu, F. Xavier, Gas sensors based on nanostructured materials, Analyst 132 (2007) 1083-1099.

Google Scholar

[7] E.H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G.V. Tendeloo, J.J. Pireaux, E. Llobet, Metal decorated multi-wall carbon nanotubes for low temperature gas sensing, Thin Solid Films 515 (2007) 8322-8327.

DOI: 10.1016/j.tsf.2007.03.017

Google Scholar

[8] V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, J. Mater. Chem. 17 (2007) 2679-2693.

DOI: 10.1039/b700857k

Google Scholar

[9] J.M. Planeix, N.Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P.Geneste, P. Bernier, P.M. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116 (1994) 7935-7936.

DOI: 10.1021/ja00096a076

Google Scholar

[10] M. Penza, G. Cassano, R. Rossi, M. Alvisi, A. Rizzo, M.A. Signore, Th. Dikonimos, E. Serra, R. Giorgi, Enhancement of sensitivity in gas chemiresistors based on carbon nanotubes surface functionalized with noble metal (Au, Pt) nanoclusters, Appl. Phys. Lett. 90 (2007) 173123.

DOI: 10.1063/1.2722207

Google Scholar

[11] A. Star, V. Joshi, S. Skarupo, D. Thomas, J.C.P. Gabriel, Gas sensor array based on metal decorated carbon nanotubes, J. Phys. Chem. B 110 (2006) 21014-21020.

DOI: 10.1021/jp064371z

Google Scholar

[12] C. Encarnación, J.R. Vargas, J.A. Toledo, M.A. Cortes, C. Angeles, Pt nanoparticles on titania nanotubes prepared by vapor-phase impregnation-decomposition method, J. Alloy Comp. 495 (2010) 458-461.

DOI: 10.1016/j.jallcom.2009.10.232

Google Scholar

[13] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.F. Dickey, J. Chen, Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chem. Phys. Lett. 303 (1999) 467-474.

DOI: 10.1016/s0009-2614(99)00282-1

Google Scholar

[14] S. Porro, S. Musso, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, A. Tagliaferro, Purification of carbon nanotubes grown by thermal CVD, Physica E 37 (2007) 58-61.

DOI: 10.1016/j.physe.2006.07.014

Google Scholar

[15] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Adv. Colloid Interfac. 128 (2006) 37-46.

DOI: 10.1016/j.cis.2006.11.007

Google Scholar

[16] S. Banerjee, T. Hemraj, S.S. Wong, Covalent surface chemistry of single walled carbon nanotubes, Adv. Mater. 17 (2005) 17-29.

DOI: 10.1002/adma.200401340

Google Scholar

[17] E. Torres, J.R. Vargas, A.M. Robledo, Synthesis and electrochemical characterization (HER-NER) of platinum based materials supported on a carbon nanotube matrix, Materials Science Forum 691 (2011) 99-104.

DOI: 10.4028/www.scientific.net/msf.691.99

Google Scholar

[18] L. Valentini, F. Mercuri, I. Armentano, C. Cantalini, S. Picozzi, L. Lozzi, S. Santucci, A. Sgamellotti, J.M. Kenny, Role of defects on the gas sensing properties of carbon nanotubes thin films: experiment and theory, Chem. Phys. Lett. 387 (2004) 356-361.

DOI: 10.1016/j.cplett.2004.02.038

Google Scholar

[19] W. Wongwiriyapan, S.I. Honda, H. Konishi, T. Mizuta, T. Ikuno, T. Ito, T. Maekawa, K. Suzuki, H. Ishikawa, K. Oura, M. Katayama, Single wall carbon nanotubes thin film sensor for ultrasensitive gas detection, Jpn. Appl. Phys. 44 (2005) L482-L484.

DOI: 10.1143/jjap.44.l482

Google Scholar