CuAl2 Intermetallic Alloy Subjected to the Hydrogen Embrittlement Reaction by Using Mechanical Attrition in Water

Article Preview

Abstract:

Al based intermetallic materials are commonly susceptible to hydrogen embrittlement reaction. Water vapor in the air reacts with the aluminum in the alloy and releasing hydrogen. Thus, the aid of this work is to know how much hydrogen can be released when the embrittlement reaction is induced inside the milling container. For this purpose the CuAl2 intermetallic material was made by conventional castings methods and then subjected to high-energy ball milling in water. The samples were characterized by X-ray diffraction pattern, attenuated total reflectance spectroscopy and scanning electron microscopy (SEM). After the milling process, the amount of hydrogen released was correlated with the other reaction products obtained during the reaction. These products were primarily aluminum hydroxides. The amount of hydrogen that can be released is similar to the theoretical amount possible that can be released.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-35

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Schlapbach, A. Züttel, Hydrogen-Storage Materials for Mobile Applications, Nature 414 (2001) 353–358.

DOI: 10.1038/35104634

Google Scholar

[2] Z.Y. Deng, J.M. Ferreira, and Y. Sakka, Hydrogen-Generation Materials for Portable Applications, J. Am. Ceram. Soc. 91 (2008) 3825–3834.

DOI: 10.1111/j.1551-2916.2008.02800.x

Google Scholar

[3] O.V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, Activation of aluminum metal and its reaction with water, J. Alloys Comp. 397 (2005) 58–62.

DOI: 10.1016/j.jallcom.2004.11.065

Google Scholar

[4] L. Soler, J. Macanás, M. Muñoz, J. Casado, Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications, Journal of Power Sources 169 (2007) 144-149.

DOI: 10.1016/j.jpowsour.2007.01.080

Google Scholar

[5] J. Macanás, L. Soler, A.M. Candela, M. Muñoz, J. Casado, Hydrogen generation by aluminum corrosion in aqueous alkaline solutions of inorganic promoters: The AlHidrox process, Energy 36 (2011) 2493-2501.

DOI: 10.1016/j.energy.2011.01.041

Google Scholar

[6] A.V. Ilyukhina, O.V. Kravchenko, B.M. Bulychev, E.I. Shkolnikov, Mechanochemical activation of aluminum with gallams for hydrogen evolution from water, International Journal of Hydrogen Energy 35 (2010) 1905-1910.

DOI: 10.1016/j.ijhydene.2009.12.118

Google Scholar

[7] A.V. Parmuzina, O.V. Kravchenko, Activation of aluminum metal to evolve hydrogen from water, International Journal of Hydrogen Energy 33 (2008) 3073-3076.

DOI: 10.1016/j.ijhydene.2008.02.025

Google Scholar

[8] O.V. Kravchenko, K.M. Semenenko, B.M. Bulychev, K.B. Kalmykov, Activation of aluminum metal and its reaction with water, Journal of Alloys and Compounds 397 (2005) 58-62.

DOI: 10.1016/j.jallcom.2004.11.065

Google Scholar

[9] M.Q. Fan, F. Xu, L.X. Sun, Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water, International Journal of Hydrogen Energy 32 (2007) 2809-2815.

DOI: 10.1016/j.ijhydene.2006.12.020

Google Scholar

[10] E. Czech, T. Troczynski, Hydrogen generation through massive corrosion of deformed aluminum in water, International Journal of Hydrogen Energy 35 (2010) 1029-1037.

DOI: 10.1016/j.ijhydene.2009.11.085

Google Scholar

[11] B. Alinejad, K. Mahmoodi, A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water, International Journal of Hydrogen Energy 34 (2009) 7934-7938.

DOI: 10.1016/j.ijhydene.2009.07.028

Google Scholar

[12] K. Mahmoodi, B. Alinejad, Enhancement of hydrogen generation rate in reaction of aluminum with water, International Journal of Hydrogen Energy 35 (2010) 5227-5232.

DOI: 10.1016/j.ijhydene.2010.03.016

Google Scholar

[13] H.W. Wang, H.W. Chung, H.T. Teng, G. Cao, Generation of hydrogen from aluminum and water-Effect of metal oxide nanocrystals and water quality, International Journal of Hydrogen Energy 36 (2011) 15136-15144.

DOI: 10.1016/j.ijhydene.2011.08.077

Google Scholar

[14] Z.Y. Deng, Y.B. Tang, L.L. Zhu, Y. Sakka, J. Ye, Effect of different modification agents on hydrogen-generation by the reaction of Al with water, International Journal of Hydrogen Energy 35 (2010) 9561-9568.

DOI: 10.1016/j.ijhydene.2010.07.027

Google Scholar

[15] M. Bobby Kannan, V.S. Raja, R. Raman, A.K. Mukhopadhyay, Influence of multistep aging on the stress corrosion cracking behavior of aluminum alloy 7010, Corrosion 59 (2003) 881-889.

DOI: 10.5006/1.3287709

Google Scholar

[16] G. Lu, E. Kaxiras, Hydrogen Embrittlement of Aluminum: the Crucial Role of Vacancies, Physical Review Letters 94 (2005) 155501.

DOI: 10.1103/physrevlett.94.155501

Google Scholar

[17] T. Takasugi, Hydrogen embrittlement of L12-type Ni3 (Al, Ti) single crystals, Acta Metallurgica et Materialia 39 (1991) 2157-2167.

DOI: 10.1016/0956-7151(91)90185-4

Google Scholar

[18] T. Takasugi, High-temperature ordered intermetallic alloys IV, MRS Symp. Proc. 213 (1991) 403.

Google Scholar

[19] T. Takasugi, Critical Issues in the Development of High Temperature Structural Materials, TMS Publication (1993) 399.

Google Scholar

[20] C.T. Liu, O. Izumi (ed.), 6th JZM International Symposium on Intermetallic Compounds - Structure and Mechanical Properties, Japan Inst. Met (1991) 703.

Google Scholar

[21] C.T. Liu, R.W. Cahn, G. Sauthoff, Ordered Intermetallics-Physical Metallurgy and Mechanical Behavior, Kluwer Academic Publishers (1992) 321.

DOI: 10.1007/978-94-011-2534-5

Google Scholar

[22] R.J. Giese, Acta Crystallographica Section B 32 (1976) 1719–1723.

Google Scholar

[23] M.W. Chase, NIST-JANAF Thermochemical Tables Fourth Edition Part II Cr-Zr, American Institute of Physics, New York, 1998.

Google Scholar

[24] R.J. Giese, Acta Crystallographica Section B 32 (1976) 1719–1723.

Google Scholar

[25] E. Wolska, W. Szajda, Use of infrared spectroscopy to identify crystalline aluminum hydroxides, Plenum Publishing Corporation (1983) 137-140.

DOI: 10.1007/bf00659871

Google Scholar

[26] X.Y. Chen, H.S. Huh, S.W. Lee, Hydrothermal synthesis of boehmite (g-AlOOH) nanoplatelets and nanowires: pH-controlled morphologies, Nanotechnology 18 (2007) 285608.

DOI: 10.1088/0957-4484/18/28/285608

Google Scholar

[27] G. Huang, S.Y. Liu, Y.A. Guo, A.P. Wang, J. Luo, C.C. Cai, Immobilization of manganese tetranylporphyrin on boehmite and its catalysis for aerobic oxidation of cyclohexane, Applied Catalysis A: General 358 (2009) 173-179.

DOI: 10.1016/j.apcata.2009.02.011

Google Scholar

[28] A. Violante, P.M. Huang, Formation mechanism of aluminum hydroxide polymorphs, Clays and Clay Minerals 41 (1993) 590-597.

DOI: 10.1346/ccmn.1993.0410509

Google Scholar

[29] H. Elderfield, J.D. Hem, The development of crystalline structure in aluminum hydroxide polymorphs on ageing, Mineralogical Magazine 39 (1973) 89-96.

DOI: 10.1180/minmag.1973.039.301.14

Google Scholar

[30] J.T. Kloprogge, H.D. Ruan, R.L. Frost, Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore, Journal of Materials Science 37 (2002) 1121-1129.

Google Scholar