Mechanical Response and Microstructure of Al-SiO2 Composites Prepared by Means of a Solid-State Route

Article Preview

Abstract:

This study deals with the production of some Al-SiO2 composites and the evaluation of milling intensity over the distribution of silica particles into the Al matrix. Samples for mechanical characterization were prepared from powders by compaction and sintering using a solid-state route complemented with mechanical milling. The mechanical response was modified as a direct function of the milling intensity, but an adverse effect was observed with prolonged milling times. Electron microscopy studies reveal a homogeneous dispersion of insoluble particles into the Al matrix, which is associated with the high grain refinement in the synthetized composites giving an important improvement on the composites strength. Also, the silica spheroidal structure is not altered nor destroyed (mechanically and/or chemically) during the composite synthesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-22

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.S.B. Reddy, Karabi Das, Siddhartha Das, A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical–thermal activation of chemical reactions, J. Mater Sci 42 (2007) 9366–9378.

DOI: 10.1007/s10853-007-1827-z

Google Scholar

[2] J. Rams, A. Ureña, M.D. López, A.J. López, Characterisation of multilayered sol–gel silica coatings on aluminium–SiC composites, Surface & Coatings Technology 201 (2006) 3715–3722.

DOI: 10.1016/j.surfcoat.2006.09.004

Google Scholar

[3] D. Özyürek, S. Tekeli, A. Güral, A. Meyveci, M. Gürü, Effect of Al2O3 amount on microstructure and wear properties of Al–Al2O3 metal matrix composites prepared using mechanical alloying method, Powder Metallurgy and Metal Ceramics 49/5-6 (2010) 289-294.

DOI: 10.1007/s11106-010-9235-3

Google Scholar

[4] P.K. Rohatgi, B.F. Schultz, A. Daoud, W.W. Zhang, Tribological performance of A206 aluminum alloy containing silica sand particles, Tribology International 43 (2010) 455–466.

DOI: 10.1016/j.triboint.2009.07.010

Google Scholar

[5] A.J. López, A. Ureña, J. Rams, Laser densification of sol–gel silica coatings on aluminium matrix composites for corrosion and hardness improvement, Surface & Coatings Tech. 203 (2009) 1474–1480.

DOI: 10.1016/j.surfcoat.2008.11.024

Google Scholar

[6] E.N. Gregolin, H. Goldenstein, R.G. Santos, Co-continuous silica–aluminum composite, J. Mat. Proc. Tech. 157–158 (2004) 688–694.

DOI: 10.1016/j.jmatprotec.2004.07.127

Google Scholar

[7] L. Perrière, Y. Champion, Phases distribution dependent strength in metallic glass–aluminium composites prepared by spark plasma sintering, Mat. Sci. Eng. A548 (2012) 112– 117.

DOI: 10.1016/j.msea.2012.03.100

Google Scholar

[8] L. Li, M.O. Lai, M. Gupta, B.W. Chua, A. Osman, Improvement of Microstructure and Mechanical Properties of AZ91/SiC Composite by Mechanical Alloying, J. Mater. Sci. 35 (2000) 5553-5561.

Google Scholar

[9] K.D. Woo, G.L. Zhang, Fabrication of Al-7wt%Si-0.4wt%Mg/SiC Nanocomposite Powders and Bulk Nanocomposites by High Energy Ball Milling and Powder Metallurgy, Curr. Appl. Phys. 4 (2004) 175-178.

DOI: 10.1016/j.cap.2003.11.002

Google Scholar

[10] S.D. Kaloshkin, V.V. Tcherdyntsev, A.I. Laptev, A.A. Stepashkin, E.A. Afonina, A.L. Pomadchik, V.I. Bugakov, Structure and Mechanical Properties of Mechanically Alloyed Al/Al-Cu-Fe Composites, Journal of Materials Science 39 (2004) 5399-5402.

DOI: 10.1023/b:jmsc.0000039253.28721.3f

Google Scholar

[11] B. Xiong, Z. Xu, Q. Yan, B. Lu, C. Cai, Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites, J. Alloy. Compd. 509 (2011) 1187-1191.

DOI: 10.1016/j.jallcom.2010.09.171

Google Scholar

[12] G. Wan-Li, Bulk Al/SiC Nanocomposite Prepared by Ball Milling and Hot Pressing Method, Trans. Nonferr. Met. Soc. Chi. 16 (2006) 398-401.

Google Scholar

[13] H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites, Composites: Part A 43 (2012) 1061–1072.

DOI: 10.1016/j.compositesa.2012.02.008

Google Scholar

[14] J. Hemanth, Abrasive and slurry wear behavior of chilled aluminum alloy (A356) reinforced with fused silica (SiO2) metal matrix composites, Composites: Part B 42 (2011) 1826–1833.

DOI: 10.1016/j.compositesb.2011.06.022

Google Scholar

[15] Z.M. Gasem, Fatigue crack growth behavior in powder-metallurgy 6061-aluminum alloy reinforced with submicron Al2O3 particulates, Composites Part B: Engineering 43 (2012) 3020-3025.

DOI: 10.1016/j.compositesb.2012.05.031

Google Scholar

[16] A. Kukovecz, T. Kollár, Z. Kónya, I. Kiricsi, Acidity of bimetallic silica composites prepared by a complexing agent assisted sol–gel method, J. Mol. Struct. 482–483 (1999) 39–42.

DOI: 10.1016/s0022-2860(98)00925-9

Google Scholar

[17] I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, C.K. Chee, Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process, Cer. Inter. 34 (2008) 2059–2066.

DOI: 10.1016/j.ceramint.2007.08.014

Google Scholar

[18] A.I. Barabanova, T.A. Pryakhina, E.S. Afanas'ev, B.G. Zavin, Ya.S. Vygodskii, A.A. Askadskii, O.E. Philippova, A.R. Khokhlov, Anhydride modified silica nanoparticles: Preparation and characterization, Appl. Surf. Sci. 258 (2012) 3168–3172.

DOI: 10.1016/j.apsusc.2011.11.057

Google Scholar

[19] W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.

DOI: 10.1016/0021-9797(68)90272-5

Google Scholar

[20] C. Sun, M. Song, Z. Wang and Y. He, Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites, JMEPEG 20 (2011) 1606–1612.

DOI: 10.1007/s11665-010-9801-3

Google Scholar

[21] A. Vencl, I. Bobic, M.T. Jovanovic, M. Babic, S. Mitrovic, Microstructural and Tribological Properties of A356 Al–Si Alloy Reinforced with Al2O3 Particles, Tribol. Lett. 32 (2008) 159–170.

DOI: 10.1007/s11249-008-9374-6

Google Scholar