[1]
B.S.B. Reddy, Karabi Das, Siddhartha Das, A review on the synthesis of in situ aluminum based composites by thermal, mechanical and mechanical–thermal activation of chemical reactions, J. Mater Sci 42 (2007) 9366–9378.
DOI: 10.1007/s10853-007-1827-z
Google Scholar
[2]
J. Rams, A. Ureña, M.D. López, A.J. López, Characterisation of multilayered sol–gel silica coatings on aluminium–SiC composites, Surface & Coatings Technology 201 (2006) 3715–3722.
DOI: 10.1016/j.surfcoat.2006.09.004
Google Scholar
[3]
D. Özyürek, S. Tekeli, A. Güral, A. Meyveci, M. Gürü, Effect of Al2O3 amount on microstructure and wear properties of Al–Al2O3 metal matrix composites prepared using mechanical alloying method, Powder Metallurgy and Metal Ceramics 49/5-6 (2010) 289-294.
DOI: 10.1007/s11106-010-9235-3
Google Scholar
[4]
P.K. Rohatgi, B.F. Schultz, A. Daoud, W.W. Zhang, Tribological performance of A206 aluminum alloy containing silica sand particles, Tribology International 43 (2010) 455–466.
DOI: 10.1016/j.triboint.2009.07.010
Google Scholar
[5]
A.J. López, A. Ureña, J. Rams, Laser densification of sol–gel silica coatings on aluminium matrix composites for corrosion and hardness improvement, Surface & Coatings Tech. 203 (2009) 1474–1480.
DOI: 10.1016/j.surfcoat.2008.11.024
Google Scholar
[6]
E.N. Gregolin, H. Goldenstein, R.G. Santos, Co-continuous silica–aluminum composite, J. Mat. Proc. Tech. 157–158 (2004) 688–694.
DOI: 10.1016/j.jmatprotec.2004.07.127
Google Scholar
[7]
L. Perrière, Y. Champion, Phases distribution dependent strength in metallic glass–aluminium composites prepared by spark plasma sintering, Mat. Sci. Eng. A548 (2012) 112– 117.
DOI: 10.1016/j.msea.2012.03.100
Google Scholar
[8]
L. Li, M.O. Lai, M. Gupta, B.W. Chua, A. Osman, Improvement of Microstructure and Mechanical Properties of AZ91/SiC Composite by Mechanical Alloying, J. Mater. Sci. 35 (2000) 5553-5561.
Google Scholar
[9]
K.D. Woo, G.L. Zhang, Fabrication of Al-7wt%Si-0.4wt%Mg/SiC Nanocomposite Powders and Bulk Nanocomposites by High Energy Ball Milling and Powder Metallurgy, Curr. Appl. Phys. 4 (2004) 175-178.
DOI: 10.1016/j.cap.2003.11.002
Google Scholar
[10]
S.D. Kaloshkin, V.V. Tcherdyntsev, A.I. Laptev, A.A. Stepashkin, E.A. Afonina, A.L. Pomadchik, V.I. Bugakov, Structure and Mechanical Properties of Mechanically Alloyed Al/Al-Cu-Fe Composites, Journal of Materials Science 39 (2004) 5399-5402.
DOI: 10.1023/b:jmsc.0000039253.28721.3f
Google Scholar
[11]
B. Xiong, Z. Xu, Q. Yan, B. Lu, C. Cai, Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites, J. Alloy. Compd. 509 (2011) 1187-1191.
DOI: 10.1016/j.jallcom.2010.09.171
Google Scholar
[12]
G. Wan-Li, Bulk Al/SiC Nanocomposite Prepared by Ball Milling and Hot Pressing Method, Trans. Nonferr. Met. Soc. Chi. 16 (2006) 398-401.
Google Scholar
[13]
H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites, Composites: Part A 43 (2012) 1061–1072.
DOI: 10.1016/j.compositesa.2012.02.008
Google Scholar
[14]
J. Hemanth, Abrasive and slurry wear behavior of chilled aluminum alloy (A356) reinforced with fused silica (SiO2) metal matrix composites, Composites: Part B 42 (2011) 1826–1833.
DOI: 10.1016/j.compositesb.2011.06.022
Google Scholar
[15]
Z.M. Gasem, Fatigue crack growth behavior in powder-metallurgy 6061-aluminum alloy reinforced with submicron Al2O3 particulates, Composites Part B: Engineering 43 (2012) 3020-3025.
DOI: 10.1016/j.compositesb.2012.05.031
Google Scholar
[16]
A. Kukovecz, T. Kollár, Z. Kónya, I. Kiricsi, Acidity of bimetallic silica composites prepared by a complexing agent assisted sol–gel method, J. Mol. Struct. 482–483 (1999) 39–42.
DOI: 10.1016/s0022-2860(98)00925-9
Google Scholar
[17]
I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, C.K. Chee, Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process, Cer. Inter. 34 (2008) 2059–2066.
DOI: 10.1016/j.ceramint.2007.08.014
Google Scholar
[18]
A.I. Barabanova, T.A. Pryakhina, E.S. Afanas'ev, B.G. Zavin, Ya.S. Vygodskii, A.A. Askadskii, O.E. Philippova, A.R. Khokhlov, Anhydride modified silica nanoparticles: Preparation and characterization, Appl. Surf. Sci. 258 (2012) 3168–3172.
DOI: 10.1016/j.apsusc.2011.11.057
Google Scholar
[19]
W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.
DOI: 10.1016/0021-9797(68)90272-5
Google Scholar
[20]
C. Sun, M. Song, Z. Wang and Y. He, Effect of Particle Size on the Microstructures and Mechanical Properties of SiC-Reinforced Pure Aluminum Composites, JMEPEG 20 (2011) 1606–1612.
DOI: 10.1007/s11665-010-9801-3
Google Scholar
[21]
A. Vencl, I. Bobic, M.T. Jovanovic, M. Babic, S. Mitrovic, Microstructural and Tribological Properties of A356 Al–Si Alloy Reinforced with Al2O3 Particles, Tribol. Lett. 32 (2008) 159–170.
DOI: 10.1007/s11249-008-9374-6
Google Scholar