[1]
J. Hirsch, Virtual fabrication of aluminium products. Microstructural modeling in Industrial Aluminium Production, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2006).
Google Scholar
[2]
V. Očenášek, P. Sedláček, The effect of surface recrystallized layers on properties of extrusions and forgings form high strength aluminium alloys, 20th International Conference on Metallurgy and Materials, Brno, (2011).
Google Scholar
[3]
Y. Byrol, The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles, J. Mater. Process. Technol., 173 (2006) 84-91.
DOI: 10.1016/j.jmatprotec.2005.09.029
Google Scholar
[4]
J. Røyset, M. M. Rødland, U. Tundal, O. Reiso, Effect of alloy chemistry and process parameters on the extrudability and recrystallization of 6082 alloy, ET'08 – The conference of innovation in aluminium extrusion, Orlando, (2008).
Google Scholar
[5]
E.D. Sweet, S.K. Caraher, N.V. Danilova, X. Zhang, effect of Extrusion Parameters on Coarse Grain Surface Layer in 6xxx-Series Extrusions.
Google Scholar
[6]
A. Foydl, A. Segatori, N. ben khalifa, L. Donati, A. Brosius, L. Tomesani, A.E. Tekkaya, Grain size evolution simulation in aluminium alloys AA6082 and AA7020 during hot forward extrusion process, Mater. Sci. Technol. 29 (2013) 100-110.
DOI: 10.1179/1743284712y.0000000132
Google Scholar
[7]
L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Grain evolution analysis and experimental validation in the extrusion of 6xxx alloys by use of a lagrangian FE code, International Journal of Plasticity, 46 (2013) 70-81.
DOI: 10.1016/j.ijplas.2012.11.008
Google Scholar
[8]
C. Poletti, M. Rodriguez-Hortalá, M. Hauser, C. Sommitsch, Microstructure development in hot deformed AA6082, Mat. Sci. Eng. A528 (2011) 2423-2430.
DOI: 10.1016/j.msea.2010.11.048
Google Scholar
[9]
F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, ELSEVIER Ltd, (2004).
Google Scholar
[10]
A. Eivani, Modelling of Microstructural Evolution during Homogenization and Simulation of Transient State Recrystallization leadint to Peripheral Coarse Grain Structure in Extruded Al-4. 5Zn-1Mg Alloy, PhD thesis, TU Delft, (2010).
Google Scholar
[11]
A. Güzel, A. Jäger, F. Parvizian, H. -G. Lambers, A.E. Tekkaya, B. Svendsen, H.J. Maier, A new method for determining dynamic grain structure evolution during hot aluminum extrusion, J. Mat. Process. Technol. 212 (2012) 323-330.
DOI: 10.1016/j.jmatprotec.2011.09.018
Google Scholar
[12]
P. Sherstnev, P. Lang, E. Kozeschnik, Treatment of simultaneous deformation and solid-state precipitation in thermo-kinetic calculations, ECCOMAS 2012, Vienna.
Google Scholar
[13]
E. Kabliman, P. Sherstnev, Integrated modelling of strength evolution in Al-Mg-Si alloys during hot deformation, Mat. Sci. Forum. 765 (2013) 429-433.
DOI: 10.4028/www.scientific.net/msf.765.429
Google Scholar
[14]
G. Engberg, L. Lissel, A Physical based Microstructure Model for Predicting the Microstructural Evolution of a C-Mn Steel during and after Hot Deformation, Steel Research Int. 79 (2008) 47-58.
DOI: 10.1002/srin.200806315
Google Scholar
[15]
C.M. Sellars, Q. Zhu, Microstructural modelling of aluminium alloys during thermomecanical processing, Mat. Sci. Eng. A280 (2000) 1-7.
Google Scholar