Grain Refinement Mechanism of Al-5Ti-1B Master Alloy by Ab Initio Calculations

Article Preview

Abstract:

To exactly understand the grain refining mechanism of α-Al by the Al-5Ti-1B master alloy, the structural properties of α-Al/solid-TiB2 (S/S) and liquid-Al/solid-TiB2 (L/S) interfaces were studied using the first-principles method. Different ordered structures were formed on the interfaces with different terminations of TiB2 (0001) surface, which determines the nucleant potency of TiB2. The heterogeneous nucleation of α-Al on the B-terminated surface is frustrated by an AlB2-like structure formed at the interface. In contrast, a five-layer quasi-solid region with stacking sequence of fcc-Al (111) planes forms on the Ti-terminated TiB2 (0001) surface, which is the basis of successful heterogeneous nucleation of α-Al. Moreover, when redundant Ti solute being added into the liquid Al region of Ti-terminated liquid-Al/TiB2 interface, the quasi-solid Al region further extends until entire solidification. The reason for using the Al-5Ti-1B master alloy rather than TiB2 powders as the commercial refiner in Al industry lies in two aspects: the excessive Ti atoms in the master alloy could guarantee sufficient Ti chemical potential to form Ti-terminated surface of TiB2, and the redundant Ti solute in inoculated melts could facilitate the growth of quasi-solid Al region at the solid/liquid interface.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

746-751

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.S. Murty, S.A. Kori, M. Chakrabort, Int. Mater. Rev. 47 (2002) 3-29.

Google Scholar

[2] M. Johnsson, L. Bäckerud, G.K. Sigworth, Metall. Trans. A 24A (1993) 481-491.

Google Scholar

[3] M. Johnsson, L. Eriksson, Z Metallkd 89 (1998) 478-480.

Google Scholar

[4] T.E. Quested, Mater. Sci. Technol. 20 (2004) 1357-1369.

Google Scholar

[5] P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, A.H. Green, Mater. Sci. Technol. 14 (1998) 394-404.

Google Scholar

[6] G.P. Jones, J. Pearson, Metall. Trans. B 7B (1976) 223-234.

Google Scholar

[7] Y.F. Han, Y.B. Dai, D. Shu, J. Wang, B.D. Sun, J. Alloys Compd. 438 (2007) 327-331.

Google Scholar

[8] Y.F. Han, Y.B. Dai, D. Shu, J. Wang, B.D. Sun, Appl. Phys. Lett. 89 (2006) 144107.

Google Scholar

[9] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892-7895.

Google Scholar

[10] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.

Google Scholar

[11] J. E. Hatch, Aluminum: properties and physical metallurgy, ASM, Ohio, (1984).

Google Scholar

[12] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 1425-14269.

Google Scholar

[13] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.

Google Scholar

[14] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.

Google Scholar

[15] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.

Google Scholar

[16] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 4 (1992) 6671-6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[17] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48 (1993) 4978-4978.

DOI: 10.1103/physrevb.48.4978.2

Google Scholar

[18] H.L. Zhang, Y.F. Han, Y.B. Dai, J. Wang, B.D. Sun, J. Phys. D: Appl. Phys. 45 (2012) 455307.

Google Scholar

[19] N. Eustathopoulos, L. Coudurier, J.C. Joud, P. Desré, J. Cryst. Growth 33 (1976) 105-115.

Google Scholar

[20] L.M. Liu, S.Q. Wang, H.Q. Ye, Acta Mater. 52 (2004) 3681-3688.

Google Scholar

[21] Y.F. Han, Y.B. Dai, J. Wang, D. Shu, B.D. Sun, Appl. Sur. Sci. 257 (2011) 7831-7836.

Google Scholar