Influence of the Dry Turning Parameters on the Ultimate Tensile Strength (UTS) of UNS A92024 Samples

Article Preview

Abstract:

The influence of the forming process in the response into service of the manufactured workpieces, in the first instance, through the surface integrity can be evaluated. The concept of surface integrity includes the assessment of geometrical aspects like shape and dimensions, and physicochemical properties like hardness and corrosion resistance. This work reports on the results of a study of the influence of the turning parameters on the Ultimate Tensile Strength (UTS) of turned bars of UNS A92024 Aluminium-Copper alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.M. Rubio, A.M. Camacho, J.M. Sanchez-Sola b, M. Marcos, Surface roughness of AA7050 alloy turned bars. Analysis of the influence of the length of machining, Journal of Materials Processing Technology. 162–163 (2005) 682–689.

DOI: 10.1016/j.jmatprotec.2005.02.096

Google Scholar

[2] V. S. Sharma, M. Dogra, N. M. Suri, Cooling techniques for improved productivity in turning, International Journal of Machine Tools & Manufacture. 49 (2009) 435–453.

DOI: 10.1016/j.ijmachtools.2008.12.010

Google Scholar

[3] M. Suraratchai, J. Limido, C. Mabru , R. Chieragatti, Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy, International Journal of Fatigue. 30 (2008) 2119–2126.

DOI: 10.1016/j.ijfatigue.2008.06.003

Google Scholar

[4] A. Gómez-Parra, M. Álvarez-Alcón, J. Salguero, M. Batista, M. Marcos, Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear. 302 (2013) 1209-1218.

DOI: 10.1016/j.wear.2012.12.001

Google Scholar

[5] ISO 6892-1. Metallic materials -Tensile testing- Part 1: Method of test at room temperature. 1st Edition, (2009).

Google Scholar

[6] ISO 1143. Metallic materials -Rotating bar bending fatigue testing. 1st Edition, (2010).

Google Scholar

[7] M.S. Carrilero, R. Bienvenido, J.M. Sánchez, M. Álvarez, A. González, M. Marcos, A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy. Int. J. Mach. Tools Manuf. 42 (2002) 215-220.

DOI: 10.1016/s0890-6955(01)00112-2

Google Scholar

[8] E.M. Trent, P.K. Wright, Metal Cutting, Third Edition, Butterworth-Heinemann, USA, (1991).

Google Scholar

[9] M.H. El-Axir, A method of modeling residual stress distribution in turning for different materials, Int. J. Mach. Tools Manuf. 42 (2002) 1055-1063.

DOI: 10.1016/s0890-6955(02)00031-7

Google Scholar

[10] I.S. Jawahir, E. Brinksmeier, R. M'Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, A.D. Jayal, Surface integrity in material removal processes: Recent advances. CIRP Ann. Manuf. Technol. 60 (2011) 603-626.

DOI: 10.1016/j.cirp.2011.05.002

Google Scholar

[11] A. Javidi, U. Rieger, W. Eichlseder, The effect of machining on the surface integrity and fatigue life, Int. J. Fatigue. 30 (2008) 2050-(2055).

DOI: 10.1016/j.ijfatigue.2008.01.005

Google Scholar

[12] B. Griffiths, Manufacturing Surface Technology: Surface Integrity and Functional Performance, first ed., Butterworth-Heinemann, UK, (2001).

Google Scholar

[13] S. Jeelani, M. Musial, Effect of cutting speed and tool rake angle on the fatigue life of 2024-T351 aluminium alloy, Int. J. Fatigue. 6 (1984) 169-172.

DOI: 10.1016/0142-1123(84)90034-3

Google Scholar