[1]
F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials, Elsevier Science, Oxford (U. K. ), (2006).
Google Scholar
[2]
E.O. Ezugwu, J. Bonney, Y. Yamane, An Overview of the Machinability of Aeroengine Alloys, Journal of Materials Processing Technology, 134 (2003) 233-253.
DOI: 10.1016/s0924-0136(02)01042-7
Google Scholar
[3]
M. Nouari, G. List, F. Girot, D. Coupard, Experimental Analysis and Optimisation of Tool Wear in Dry Machining of Aluminium Alloys, Wear, 255 (2003) 1359-1368.
DOI: 10.1016/s0043-1648(03)00105-4
Google Scholar
[4]
I.J. Polmear, Light Alloys., Butterworth-Heinemann, Oxford (U. K. ), (2005).
Google Scholar
[5]
A. Shokrani, V. Dhokia, S.T. Newman, Environmentally Conscious Machining of Difficult-To-Machine Materials with Regard to Cutting Fluids, International Journal of Machine Tools and Manufacture, 57 (2012) 83-101.
DOI: 10.1016/j.ijmachtools.2012.02.002
Google Scholar
[6]
S. Zhang, J.F. Li, Y.W. Wang, Tool Life and Cutting Forces in End Milling Inconel 718 Under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions, Journal of Cleaner Production, 32 (2012) 81-87.
DOI: 10.1016/j.jclepro.2012.03.014
Google Scholar
[7]
L.N. López de Lacalle, J. Pérez, J.I. Llorente, J.A. Sánchez, Advanced Cutting Conditions for the Milling of Aeronautical Alloys, Journal of Materials Processing Technology, 100 (2000) 1-11.
DOI: 10.1016/s0924-0136(99)00372-6
Google Scholar
[8]
Z. Liu, Q. An, J. Xu, M. Chen, S. Han, Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and Minimum Quantity Lubrication (MQL) conditions, Wear, 305 (2013).
DOI: 10.1016/j.wear.2013.02.001
Google Scholar
[9]
I. Korkut, M.A. Donertas, The Influence of Feed Rate and Cutting Speed on the Cutting Forces, Surface Roughness and Tool–Chip Contact Length During Face Milling, Materials and Design, 28 (2007) 308-312.
DOI: 10.1016/j.matdes.2005.06.002
Google Scholar
[10]
R.M. Rashad, T.M. El-Hossainy, Machinability of 7116 Structural Aluminum Alloy, Materials and Manufacturing Processes, 21 (2006) 23-27.
DOI: 10.1080/amp-200060603
Google Scholar
[11]
M. Batista, J. Salguero, A. Gómez, M. Álvarez, M. Marcos, Image Based Analysis Evaluation of the Elements of Secondary Adhesion Wear in Dry Turning of Aluminum Alloys, Advanced Materials Research, 498 (2012) 133-138.
DOI: 10.4028/www.scientific.net/amr.498.133
Google Scholar
[12]
E.M. Rubio, A.M. Camacho, J.M. Sánchez-Sola, M. Marcos, Surface Roughness of AA7050 Alloy Turned Bars: Analysis of the Influence of the Length of Machining, Journal of Materials Processing Technology, 162–163 (2005) 682-689.
DOI: 10.1016/j.jmatprotec.2005.02.096
Google Scholar
[13]
H. Gökkaya, The Effects of Machining Parameters on Cutting Forces, Surface Roughness, Built-Up Edge (BUE) and Built-Up Layer (BUL) During Machining AA2014 (T4) Alloy, Journal of Mechanical Engineering, 56 (2010) 584-593.
DOI: 10.5772/56027
Google Scholar
[14]
H. Gökkaya, A. Taskesen, The Effects of Cutting Speed and Feed Rate on Bue-Bul Formation, Cutting Forces and Surface Roughness when Machining AA6351 (T6) Alloy, Journal of Mechanical Engineering, 54 (2008) 521-530.
Google Scholar
[15]
F.J. Trujillo, L. Sevilla, J. Salguero, M. Batista, M. Marcos, Parametric Potential Model for Determining the Micro-Geometrical Deviations of Horizontally Dry-Turned UNS A97075 (Al-Zn) Alloy, Advanced Science Letters, 19 (2013) 731-735.
DOI: 10.1166/asl.2013.4818
Google Scholar
[16]
J. Salguero, A. Gómez, M.S. Carrilero, M. Batista, M. Álvarez, M. Marcos, Roughness Prediction Models for Tangential Cutting Forces in the Dry Turning of Al-Cu Alloys, Proceedings of the 14th International Conference on Advances in Material Processing Technologies AMPT, Estambul, (2011).
Google Scholar