[1]
M. Held, On the computational geometry of pocket machining, Springer, New York, (1991).
Google Scholar
[2]
N.M. Patrikalakis, T. Maekawa, Shape interrogation for computer-aided design and manufacturing, Springer, New York, (2002).
DOI: 10.1007/978-3-642-04074-0
Google Scholar
[3]
T. Kuragano, FRESDAM system for design of aesthetically pleasing free – form objects and generation of collision – free tool paths, Computer-Aided Design, 24-11 (1992) 573-581.
DOI: 10.1016/0010-4485(92)90069-m
Google Scholar
[4]
M. Liang et al, A STEP based tool path generation system for rough machining of planar surfaces, Computer in Industry, 32 (1996) 219-231.
DOI: 10.1016/s0166-3615(96)00060-7
Google Scholar
[5]
A. Hatna, R.J. Grieve, P. Broomhead, Automatic CNC milling of pockets: geometric and technological issues, Computer Integrated Manufacturing System, 11-4 (1998) 309-330.
DOI: 10.1016/s0951-5240(98)00030-5
Google Scholar
[6]
B.K. Choi, B.H. Kim, Die-cavity pocketing via cutting simulation, Computer Aided Design, 29-12 (1997) 837-846.
DOI: 10.1016/s0010-4485(97)00031-6
Google Scholar
[7]
H-C Kim, Tool path generation and modification for constant cutting forces in direction parallel milling, International Journal of Advanced Manufacturing Technology, 52 (2011) 937-947.
DOI: 10.1007/s00170-010-2790-4
Google Scholar
[8]
P. Cardoso, J.P. Davim, Optimization of roughness in micromilling, Materials and Manufacturing Processes 25 (2010) 1115-1119.
DOI: 10.1080/10426914.2010.481002
Google Scholar
[9]
C. Gologlu, N. Sakarya, The effects of cutter path strategies on surface roughness of pocket milling of 1. 2738 steel based on Taguchi method. Journal of Materials Processing Technology, 206 (2008) 7-15.
DOI: 10.1016/j.jmatprotec.2007.11.300
Google Scholar
[10]
S.K. Das, J.A. S Green, J.G. Kaufman, The development of recycle-friendly automotive aluminum alloys, Journal of the minerals, metals and materials society 59 (2007) 47-51.
DOI: 10.1007/s11837-007-0140-2
Google Scholar
[11]
P.S. Sivasakthivel, V. Velmurugan, R. Sudhakaram, Prediction of vibration amplitude from machining parameters by response surface methodology in end milling, International Journal of Advanced Manufacturing Technology, 53 (2011) 453-461.
DOI: 10.1007/s00170-010-2872-3
Google Scholar