Topography Prediction on Grinding of Emerging Aeronautical TiAl Intermetallic Alloys

Article Preview

Abstract:

Gamma-TiAl intermetallic materials are the focus of all leading aerospace / gas turbine manufacturers, as a replacement for some nickel-based superalloy components in parts of the engine subject to temperatures < 900°C. Although applicable for only a relatively narrow range of applications, titanium intermetallic materials are likely to play a significant role in the production of future aeroengines. This work presents the results from grinding tests on two types of Gamma TiAl alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-89

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lamikiz, A., López de Lacalle, L.N., Sánchez, J.A., Salgado, M.A., 2004. Cutting force estimation in sculptured surface milling. International Journal of Machine Tools and Manufacture, Vol. 44: 1511 – 1526.

DOI: 10.1016/j.ijmachtools.2004.05.004

Google Scholar

[2] Rowe, W.B., Jin, T., 2001. Temperature in High Efficiency Deep Grinding (HEDG). Annals of the CIRP, 50/1: 205-208.

DOI: 10.1016/s0007-8506(07)62105-2

Google Scholar

[3] Sharman, A.R.C., Aspinwall, D.K., Dewesb, R.C., Bowen, P., 2001. Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear, Vol. 249: 473–481.

DOI: 10.1016/s0043-1648(01)00575-0

Google Scholar

[4] Gradisek, J., Kalveram, M., Weinert, K., 2004. Mechanistic identification of specific force coefficients for a general end mill. International Journal of Machine Tools & Manufacture 44: 401–414.

DOI: 10.1016/j.ijmachtools.2003.10.001

Google Scholar

[5] Kato, T., Fujii, H., 2000. Temperature Measurement of Workpiece in Surface Grinding by PVD Film Method. Journal of Manufacturing Science and Engineering, 122: 297-303.

DOI: 10.1115/1.2836810

Google Scholar

[6] López de lacalle, L.N., Pérez, J., Llorente, J.L., Sánchez, J.A., 2000. Advanced cutting conditions for the milling of aeronautical alloys. Journal of Materials Processing Technology, Vol. 100: 1-11.

DOI: 10.1016/s0924-0136(99)00372-6

Google Scholar

[7] Rao, R.V., 2010. Advanced modeling and optimization of manufacturing processes: international research and development. Springer-Verlang London.

Google Scholar

[8] Olvera, D., Urbicain, G., Beranoagirre, A., López de Lacalle, L.N., 2010. Hole Making in Gamma TiAl. DAAAM International scientific book, 337-347.

DOI: 10.2507/daaam.scibook.2010.32

Google Scholar

[9] Webster, J.A., Heinzel, C., Wittmann, M., Thoens K., 2002. Assessment of Grinding Fluid Effectiveness in Continuous-Dress Creep Feed Grinding. Annals of the CIRP, 51/1: 235-240.

DOI: 10.1016/s0007-8506(07)61507-8

Google Scholar

[10] Stephenson, D.J., Jin, T., 2003. Physical Basics in Grinding, 1st European Conference on Grinding, 13- 1 -> 13-21.

Google Scholar

[11] Brinksmeier, E., Heinzel, C., Wittmann, M., 1999. Friction, Cooling, and Lubrication in Grinding. Annals of the CIRP Keynote STC G 48/2: 581-598.

DOI: 10.1016/s0007-8506(07)63236-3

Google Scholar

[12] López de Lacalle, L.N., Sánchez, J.A., Lamikiz A., 2004. High Performace Machining. Eds Izaro.

Google Scholar

[13] Aspinwal, D. K., Dewes, R. C., Mantle, A. L., 2005. The Machining of y-TiAl Intermetallic Alloys. CIRP Annals - Manufacturing Technology, Vol. 54-1: 99-104.

DOI: 10.1016/s0007-8506(07)60059-6

Google Scholar