Characterization of Soils as Potential Raw Materials for Soil Stabilization Application Using Geopolymerization Method

Article Preview

Abstract:

Soft soil has been associated to many problems especially in engineering field. Continues research and studies are done to find other alternatives in soil stabilization that environmental friendly and economic. Geopolymerization is one of the developing fields that can fulfill those requirements. In this preliminary study, three samples of soil (Soil 1, 2 and 3) were examined to investigate their potential for geopolymerization method based on their characterization. X-ray fluorescence, X-ray diffraction and scanning electron microscope were conducted. From the results, the soils do have potential, however, further investigations need to be done after this study to evaluate whether the soils are suitable using geopolymerization method for soil stabilization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Atmaja L., Fansuri H., Maharani A. (2011). Crystalline Phase Reactivity In The Synthesis Of Fly Ash-Based Geopolymer. Indo. J. Chem., 2011, 11(1), 90-95.

DOI: 10.22146/ijc.21426

Google Scholar

[2] Barden L., Sides G. (1971). Sample Disturbance in the Investigation of Clay Structure. Geotechnique 1971, 21 (3), 211-222.

DOI: 10.1680/geot.1971.21.3.211

Google Scholar

[3] Black J. M. W., Dudas M. J. (1987). The Scanning Electron Microscopic Morphology of Quartz in Selected Soils From Alberta. Canadian Journal of Soil Science, Vol. 67, Issue 4 (1987), pp.965-971.

DOI: 10.4141/cjss87-092

Google Scholar

[4] Chindaprasirt P., Chareerat T., Sirivivatnanon V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composite, Vol. 29, Issue 3 (2007), pp.224-229.

DOI: 10.1016/j.cemconcomp.2006.11.002

Google Scholar

[5] Cristelo N., Glendinning S., Fernandes L., Pinto A. T. (2013). Effects of alkaline-activated fly ash and Portland cement on soil stabilisation. Acta Geotechnica (2013).

DOI: 10.1007/s11440-012-0200-9

Google Scholar

[6] Davidovit J. (1991). Geopolymers: inorganic polymeric new materials. J Therm Anal 1991, 37, 1633-1656.

Google Scholar

[7] Davidovits J. (1987). Ancient and modern concretes: what is the real difference? Concrete International (1987) Vol. 9 (12), 23-29.

Google Scholar

[8] Davidovits J. (2011). Geopolymer Chemistry & Applications 3rd Edition. Saint-Quentin: Institut Geopolymere.

Google Scholar

[9] Dimas D., Giannopoulou L., Panias D. (2009). Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J Mater Sci 2009, 44, 3719-3730.

DOI: 10.1007/s10853-009-3497-5

Google Scholar

[10] Duxson P., Fernandez-Jimenez A., Provis J. L., Lukey G. C., Palomo A., van Deventer J. S. J. (2007). Geopolymer technology : the current state of the art. Journal of Materials Science 2007, 42 (9) 2917-2933.

DOI: 10.1007/s10853-006-0637-z

Google Scholar

[11] Elimbi A., Tchakoute H. K., Njopwouo D. (2011). Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Construction and Building Materials, Vol. 25, Issue 6 (2011), p.2805–2812.

DOI: 10.1016/j.conbuildmat.2010.12.055

Google Scholar

[12] Fauzi A., Nazmi W. M., Fauzi U. J. (2010). Subgrade Stabilization of Kuantan Clay Using Fly Ash and Bottom Ash. The 8th International Conference on Geotechnical and Transportation Engineering Geotropika (2010).

DOI: 10.1142/9789814365161_0065

Google Scholar

[13] Garcia J. I. E., Perez L. J. E., Gorokhovsky A., Zamorano L. Y. G. (2009).

Google Scholar

[14] Gillott J. E. (1986). Some Clay-Related Problems In Engineering Geology In North America. Clay Minerals (1986) 21, 261-278.

DOI: 10.1180/claymin.1986.021.3.02

Google Scholar

[15] Gomes K.C., Lima G.S.T., Torres S.M., De Barros S., Vasconcelos I.F., Barbosa N.P. (2010). Iron distribution in geopolymer with ferromagnetic rich precursor. Materials Science Forum Vol. 643 (2010) , 131-138.

DOI: 10.4028/www.scientific.net/msf.643.131

Google Scholar

[16] Gourley J. T. (2003). Geopolymers, opportunities for environmentally friendly construction material. Proceedings of the International Conference and Exhibition on Adaptive Materials for a Modern Society (Materials '03), Sydney, Australia, (2003).

Google Scholar

[17] Grim R. E. (1953). Clay Minerology. New York: McGraw-Hill.

Google Scholar

[18] Habert G., Lacaillerie J. B. E., Roussel N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production 19 (2011) 1229-1238.

DOI: 10.1016/j.jclepro.2011.03.012

Google Scholar

[19] Heah C.Y., Kamarudin H., Mustafa Al Bakri A.M., Bnhussain M., Luqman M., Khairul Nizar I., Ruzaidi C.M., Liew Y.M. (2010).

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar

[20] Holtz R. D., Kovacs W. D. (1981). In An Introduction to Geotechnical Engineering. Englewood Cliffs, New Jersey: Prentice-Hall Inc.

Google Scholar

[21] Horpibulsuk S., Phetchuay C., Chinkulkijniwat A. (2012). Soil Stabilization by Calcium Carbide Residue and Fly Ash. J. Mater. Civ. Eng., 2012, 24(2), 184-193.

DOI: 10.1061/(asce)mt.1943-5533.0000370

Google Scholar

[22] Ismail I., Bernal S. A., Provis J. L., San Nicolas R., Hamdan S., Van Deventer J. S. J. (2014).

Google Scholar

[23] Khale D., Chaudhary R. (2007). Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci (2007) 42: 729-746. J Mater Sci (2007) 42: 729-74.

DOI: 10.1007/s10853-006-0401-4

Google Scholar

[24] Locat J., Berube M., Changnon J., Gelinas P. (1985). The Mineralogy Of Sensitive Clays In Relation To Some Engineering Geology Problems - An Overview. Applied Clay Science, 1 (1985) 193-205. Applied Clay Science, 1 (1985) 193-205(193-205).

DOI: 10.1016/0169-1317(85)90573-3

Google Scholar

[25] Low K. C. (2006).

Google Scholar

[26] Madejska L., Jarosinski A., Zelazny S., Kusnierova M., Chachlowska M. (2011). Properties of geopolymer binder obtained from fly ash. Technical Transaction Politechniki Krakowskiej, Issue 8 (2011).

Google Scholar

[27] Popescu M. E. (1979). Engineering Problems Associated With Expansive Clays From Romania. Engineering Geology, 14 (1979) 43-58.

DOI: 10.1016/0013-7952(79)90062-0

Google Scholar

[28] Rowles M., O'Connor B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of matakaolinite. J Mater Chem 2003, 13, 1161-1165.

DOI: 10.1039/b212629j

Google Scholar

[29] Senol A., Edil T. B., Shafique M. S., Acosta H. A., Benson C. H. (2006). Soft subgrades' stabilization by using various fly ashes. Resources, Conservation and Recycling 46 (2006) 365-376.

DOI: 10.1016/j.resconrec.2005.08.005

Google Scholar

[30] Sew G. S., Chin T. Y. (2006). Landslides: Case Histories, Lessons Learned And Mitigation Measures. Landslide, Sinkhole, Structure Failure: MYTH or SCIENCE.

Google Scholar

[31] SME. (1998). Crystalline Silica. USA: Society for Mining, Metallurgy, and Exploration, Inc.

Google Scholar

[32] Srinivasan K., Sivakumar A. (2013). Geopolymer Binders. ISRN Polymer Science, Volume 2013 (2013), Article ID 509185, (2013).

DOI: 10.1155/2013/509185

Google Scholar

[33] Van Jaarsveld J. G. S., Van Deventer J. S. J., Lukey G. C. (2003). The characterisation of source materials in fly ash-based geopolymers. Material Letters, Vol. 57, Issue 7 (2003), p.1272–1280.

DOI: 10.1016/s0167-577x(02)00971-0

Google Scholar

[34] Zhang M., Guo H., El-Korchi T., Zhang G., Tao M. (2013). Experimental feasibility study of geopolymer as the next-generation soil. Construction and Building Materials 47 (2013) 1468-1478. Construction and Building Materials 47 (2013) 1468-1478.

DOI: 10.1016/j.conbuildmat.2013.06.017

Google Scholar