[1]
Aidah Jumahat, Costas Soutis, Jamaluddin Mahmud, Nurulnatisya Ahmad. (2012). Compressive properties of nanoclay/epoxy nanocomposites. Engineering Procedia, 41: pp.1607-1613.
DOI: 10.1016/j.proeng.2012.07.357
Google Scholar
[2]
Jumahat A., Soutis C., Jones F. R, Hodzic A., (2010) Fracture mechanism and failure analysis of carbon fiber/ toughened epoxy composites subjected to compressive loading, Composite Structure. 92: pp.295-305.
DOI: 10.1016/j.compstruct.2009.08.010
Google Scholar
[3]
Utracki, L.A., Sepehr, M., Boccaleri, E., Synthetic. (2007). Layered nanoparticles for polymeric nanocomposites. Polymers for Advanced Technologies, 18: pp.1-37.
DOI: 10.1002/pat.852
Google Scholar
[4]
Alexandre, M. and P. Dubois. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28 (1-2): pp.1-63.
DOI: 10.1016/s0927-796x(00)00012-7
Google Scholar
[5]
Usuki, A., et al.,. (1993). Synthesis of nylon 6-clay hybrid. Journal of Materials Research (USA), 8 (5): pp.1179-1184.
Google Scholar
[6]
Akelah, A. and A. Moet. (1996). Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. Journal of Materials Science, 31 (13): pp.3589-3596.
DOI: 10.1007/bf00360767
Google Scholar
[7]
Gianne Es, (1996). Polymer Layered Silicate Nanocomposites. Advance. Materials, 8: p.29–35.
Google Scholar
[8]
LeBaron, P., Z. Wang, and T. Pinnavaia. (1999). Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15 (1-2): pp.11-29.
DOI: 10.1016/s0169-1317(99)00017-4
Google Scholar
[9]
Yusrina Mat Daud, Hussin Kamarudin, Che Mohd Ruzaidi, Azlin Fazlina Osman. (2014). Polyolefin Layered Silicates Nanocomposites - A review. Key Engineering Materials, Vols. 594: pp.671-675.
DOI: 10.4028/www.scientific.net/kem.594-595.671
Google Scholar
[10]
U. Rattanasak, P. Chindaprasirt. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng, 22: p.1073–1078.
DOI: 10.1016/j.mineng.2009.03.022
Google Scholar
[11]
A.S. De Vargas, D.C.C. Dal Molin, A.C.F. Vilela, F.J. Da Silva, B. Pavao, H. Veit. (2011).
Google Scholar
[12]
Patimapon Sukmak, Suksun Horipbulsuk, Shui Long Shen. (2013). Strength development in clay-fly ash geopolymer. Construction and Building Materials, 40: pp.566-574.
DOI: 10.1016/j.conbuildmat.2012.11.015
Google Scholar
[13]
J. Temuujin, R. P Williams, A. van Riessen. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209: pp.5726-5280.
DOI: 10.1016/j.jmatprotec.2009.03.016
Google Scholar
[14]
Alexandra Silva de Vagas, Denise C. C Dal Molin, Antonio C.F. Velela, Felipe Jose da Silva, Bruno Pavoa, Hugo Velt. (2011).
Google Scholar
[15]
Sammy M. Nyale, Omotola O. BabajideLeslie F. Petrik, Grant D. Birch, Nuran Böke. (2013). Synthesis and characterization of coal fly ash-based foamed geopolymer, Procedia Environmental Sciences, 18 : p.722 – 730.
DOI: 10.1016/j.proenv.2013.04.098
Google Scholar
[16]
A.M. Mustafa Al Bakri,H. Kamarudin, M. Bnhussain, Khairul Nizar A.R. Rafiza A.M. Izzat. (2011).
DOI: 10.4028/www.scientific.net/amr.626.918
Google Scholar