[1]
Mertiny, P. and F. Ellyin, Influence of the filament winding tension on physical and mechanical properties of reinforced composites. Composites Part A: Applied Science and Manufacturing, 2002. 33(12): pp.1615-1622.
DOI: 10.1016/s1359-835x(02)00209-9
Google Scholar
[2]
Karpuz, P., Mechanical Characterization Of Filament Wound Composite Tubes By Internal Pressure Testing, 2005, MIDDLE EAST TECHNICAL UNIVERSITY.
Google Scholar
[3]
Abdalla, F.H.S.A.M., Y.A. Khalid, S.M. Sapuan, A.M.S. Hamouda, B.B. Sahari, M.M. Hamdan, Design and fabrication of low cost filament winding machine. Materials and Design, 2007. 28: p.6.
DOI: 10.1016/j.matdes.2005.06.015
Google Scholar
[4]
Henninger, F.J.H.K.F., Thermoplastic filament winding with online-impregnation. Part B. Experimental study of processing parameters. Composites, 2002. 33: p.12.
DOI: 10.1016/s1359-835x(02)00136-7
Google Scholar
[5]
Tran, D., et al., Mechanical Properties of Silica-Based Geopolymer Composites Cured at Ambient Conditions in Accordance with Size-Independent Method. (2010).
Google Scholar
[6]
Yunsheng Z, Wei S, Zongjin L. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Appl Clay Sci; 47(3–4): 271–5. (2010).
DOI: 10.1016/j.clay.2009.11.002
Google Scholar
[7]
Granizo ML, Varela MTB, Martinez-Ramirez S. Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J Mater Sci; 42: 2934–43. (2007).
DOI: 10.1007/s10853-006-0565-y
Google Scholar
[8]
Heah CY et al. Study on solids-to-liquid and alkaline activator ratios on kaolin based geopolymers. Constr Build Mater; 35: 912–92. (2012).
DOI: 10.1016/j.conbuildmat.2012.04.102
Google Scholar
[9]
Van Jaarsveld JGS. The physical and chemical characterisation of fly ash based geopolymers. Victoria, Australia: Department of Chemical Engineering, University of Melbourne; (2000).
Google Scholar
[10]
Temuujin J, Riessen AV, MacKenzie KJD. Preparation and characterisation of fly ash based geopolymer mortars. Constr Build Mater; 24: 1906–10. (2010).
DOI: 10.1016/j.conbuildmat.2010.04.012
Google Scholar
[11]
Yunsheng Z et al. Synthesis and heavy metal immobilization behaviours of slag based geopolymer. J Hazard Mater; 143: 206–13. (2007).
Google Scholar
[12]
Chang JJ. A Study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res; 33: 1005– 11. (2003).
DOI: 10.1016/s0008-8846(02)01096-7
Google Scholar
[13]
D.H. Tran, P.L., D. Kroisova, O. Bortnovsky & P. Bezucha, Mechanical Properties of Silica-Based Geopolymer Composites Cured at Ambient Conditions in Accordance with Size-Independent Method, in The 2nd RMUTP International Conference 20102010, Czech Republic. p.8.
Google Scholar
[14]
Tran, D.H.P.L., Dora Kroisiva, Oleg Bortnovsky, Thermal Mechanical Behavior of Silica-Based Geopolymer-0Carbon composite, in 7th International Conference - TEXSCI 20102010: Czech Republic. pp.1-8.
Google Scholar
[15]
Karpuz, P., Mechanical Characterization of Filament Wound Composite Tubes by Internal Pressure Testing, in Metallurgical and Materials Enginnering2005, Middle East Technical University.
Google Scholar