Review on Development of Clay Based Geopolymer Ceramic Composites

Article Preview

Abstract:

Geopolymer results from the reaction of a source material that is rich in silica and alumina such as kaolin with alkaline activator solution. Geopolymers are inorganic aluminosilicate materials that possess relatively good mechanical properties and good thermal behavior but they exhibit failure behavior similar to brittle solids. This limitation may be readily overcome through the formation of ceramics of geopolymer and the addition of filler to improve strength and toughness. This paper review and summarize the current knowledge on geopolymer ceramic with addition of fine filler materials and the effect of filler content on the physical and mechanical characteristic of clay based geopolymer ceramic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-43

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Sanjay, and K. Rakesh, Mechanical activation of fly ash: Effect on rection, structure and properties of resulting geopolymer, Ceram. Int. Vol. 37, (2011), p.533.

Google Scholar

[2] J. Davidovits, Geopolymer- inorganic polymeric new materials, J Therm Anal. Vol. 37, (1991), p.1633.

Google Scholar

[3] J. Davidovits, 30 years of successes and failures in geopolymer application, Geopolymer 2002 Conference, Saint-Quentin (France), Melbourne (Australia): Geopolymer Institute; (2002).

Google Scholar

[4] V.F.F. Barbosa and K.J.D. Mackenzie, Synthesis and thermal behavior of potassium sialates geopolymers, Mater Lett. Vol. 57 (2003), p.1477.

Google Scholar

[5] V.F.F. Barbosa and K.J.D. Mackenzie, Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate, Mater Res. Bull Vol. 38(2) (2003), p.319.

DOI: 10.1016/s0025-5408(02)01022-x

Google Scholar

[6] L. J. Bell, E. P. Driemeyer and M. W. Kriven, Formation of ceramics from metakaolin-based geopolymers. Part I: Cs-based geopolymer, J. Am. Ceram. Soc Vol 92 (2009), pp.1-8.

DOI: 10.1111/j.1551-2916.2008.02790.x

Google Scholar

[7] P. Duxson, G.C. Lukey, J.S.J. Van Deventer, Physical evolution of Na-geopolymer derived from metakaolin up to 1000oC, J. Mater. Sci. Vol. 42(9) (2007), p.3044.

DOI: 10.1007/s10853-006-0535-4

Google Scholar

[8] P. Duxson, G.C. Lukey, and J.S.J. Van Deventer, Thermal evolution of metakaolin geopolymer: part1 – physical evolution, J. Non Cryst. Solid Vol. 352 (2006), p.5541.

DOI: 10.1016/j.jnoncrysol.2006.09.019

Google Scholar

[9] L. J. Bell, E. P. Driemeyer and M. W. Kriven, Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer. J. Am. Ceram. Soc., Vol. 92 (2009), pp.607-615.

DOI: 10.1111/j.1551-2916.2008.02922.x

Google Scholar

[10] Xu, H., and Van Daventer, J.S.J., The geopolymerization of alumino-silicate minerals. International Journal of Mineral Processing, 2000, Vol. 59; pp.247-266.

DOI: 10.1016/s0301-7516(99)00074-5

Google Scholar

[11] Palomo, A., Grutzeck, M.W., and Blanco, M.T., Alkali-Activated Fly Ashes, A cement for the Future. Cement and Concrete Research, 1999, Vol. 29: pp.1323-1329.

DOI: 10.1016/s0008-8846(98)00243-9

Google Scholar

[12] V.F.F. Barbosa, K.J.D. Mackenzie, C. Thaumaturgo, Synthesis and characterization of minerals based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int J. Inorg. Mater. Vol. 2 (2000), pp.309-317.

DOI: 10.1016/s1466-6049(00)00041-6

Google Scholar

[13] A. Palomo, M.T. Blanco-Varela, M.L. Granizo, F. Puertas, T. Vazquez, and M.W. Grutzeck, Chemical stability of cementatious material based on metakaolin, Cem. Concr. Res. Vol. 29 (1999), p.997.

DOI: 10.1016/s0008-8846(99)00074-5

Google Scholar

[14] J.C. Swanepoel, and C.A. Strydom, Utilisation of fly ash in a geopolymeric material, Appl. Geochemistry, Vol. 17 (2002), p.1143.

DOI: 10.1016/s0883-2927(02)00005-7

Google Scholar

[15] T.W. Cheng, and J.P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag, Miner. Eng. Vol. 16(23) (2003), p.205.

DOI: 10.1016/s0892-6875(03)00008-6

Google Scholar

[16] T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, and S.F. Yang The heavy metal adsorption characteristics on metkaolin-based geopolymer, Appl. Clay Sci. Vol. 56 (2012), p.90.

DOI: 10.1016/j.clay.2011.11.027

Google Scholar

[17] T.H. Ueng, S.J. Lyu, H.W. Chu, H.H. Lee, and T.T. Wang, Adhesion at interface of geopolymer and cement mortar under compression: an experimental study, Constr. Build Mater. Vol. 35 (2012), p.204.

DOI: 10.1016/j.conbuildmat.2012.03.008

Google Scholar

[18] E.N. Kani, A. Allahverdi, and J.L. Provis: Efflorescence control in geopolymer binders based on natural pozzolan, Cem. Concr. Compos. Vol. 34(1) (2012), p.25.

DOI: 10.1016/j.cemconcomp.2011.07.007

Google Scholar

[19] J.G.S. Van Jaarsveld, J.S.J. van Daventer, and L. Lorenzen, The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers, Miner. Eng. Vol. 10 (1997) p.659.

Google Scholar

[20] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, and Y.M. Liew, Potential Application of kaolin without calcine as greener concrete: A Review, Aus. J. Basic and Appl. Sci. Vol. 5(7) (2011), p.1026.

DOI: 10.1016/j.conbuildmat.2011.12.079

Google Scholar

[21] Z. Zhang, H., Wang, X., Yao, and Y., Zhu, Effect of halloysite in kaolin on the formation and properties of geopolymers, Cem Conct. Compos Vol. 34 (2012), p.709.

Google Scholar

[22] Z. Zuhua, Y. Xiao, Z. HUajun, and C. Yue, Roles of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci. Vol. 43 (2009), p.218.

DOI: 10.1016/j.clay.2008.09.003

Google Scholar

[23] A. Shvarzman, K. Kovler, G.S. Grader and G. E Shter, The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite, Cem. Concr. Res. Vol. 33 (2003), p.405.

DOI: 10.1016/s0008-8846(02)00975-4

Google Scholar

[24] M.S. Prasad, K.J. Reid, and H.H. Murray, Kaolin: processing, properties and applications, Appl. Clay Sci. Vol. 6 (1991), p.87.

Google Scholar

[25] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. K. Nizar, C.M. Ruzaidi, and Y.M. Liew, Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers, Int. J. Miner. Metall. Mater. Vol. 20(3) (2013).

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar

[26] J. Davidovits: Geopolymer Chemistry and Application. 2nd ed. Saint-Quentin, France: Institute of geopolymer: (2008).

Google Scholar

[27] H. Xu, and J.S.J. Van Daventer, Microstructural characterization of geopolymer synthesized from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, Cemen. Concr. Res. Vol. 32 (2002), p.1705.

DOI: 10.1016/s0008-8846(02)00859-1

Google Scholar

[28] K. Komnitsas, D. Zaharak, Geopolymerisation: a review and prospects for the mineral industry, Miner. Eng. Vol. 20 (2007), p.1261.

Google Scholar

[29] H. Peigang, J. Dechang, W. Meirong and Z. Yu, Effect of high-temperature heat treatment on themechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Int. Vol. 36 (2010), p.2395.

Google Scholar

[30] E. Y. Gutmanas, Materials with fine microstructures by advanced powder metallurgy, Prog. Mater. Sci. Vol. 34 (1990), p.261.

Google Scholar

[31] N. Xie, L. J. Bell, M. Gordon, Fabrication of structureal leucite glass-ceramic from potassium-based geopolymer precursor, J. Am. Ceram. Soc., Vol. 93 (2010), p.2644.

DOI: 10.1111/j.1551-2916.2010.03794.x

Google Scholar

[31] H. Peigang, and J. Dechang, and W. Shengjin, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor, J. Euro. Ceram. Soc., Vol. 33 (2013), p.689.

DOI: 10.1016/j.jeurceramsoc.2012.10.019

Google Scholar

[32] H. Peigang, and J. Dechang, Low temperature sintered pollucite ceramic from geopolymer precursor synthetic metakaolin, J. Mater. Sci. Vol. 48 (2013), p.1812.

DOI: 10.1007/s10853-012-6944-7

Google Scholar

[33] W.M. Kriven, J. L. Bell, M. Gordon, Geopolymer alkali bonded ceramics (ABCs) for high- tech applications. Invited lecture presented at the 107th annual meeting of The American Ceramic Society, held in Baltimore, MD, April 10-13; (2015).

Google Scholar

[34] B.G. Nair, Q. Zhao, and R.F. Cooper, Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applicatios, J Mater Sci. Vol. 42 (2007) p.3083.

DOI: 10.1007/s10853-006-0526-5

Google Scholar

[35] C. Kuenzel, L.M. Grover, L. Vandeperre, A.R. Boccaccini and C.R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars, J. Euro. Ceram. Soc., Vol. 33 (2013) p.251.

DOI: 10.1016/j.jeurceramsoc.2012.08.022

Google Scholar