[1]
K. Sanjay, and K. Rakesh, Mechanical activation of fly ash: Effect on rection, structure and properties of resulting geopolymer, Ceram. Int. Vol. 37, (2011), p.533.
Google Scholar
[2]
J. Davidovits, Geopolymer- inorganic polymeric new materials, J Therm Anal. Vol. 37, (1991), p.1633.
Google Scholar
[3]
J. Davidovits, 30 years of successes and failures in geopolymer application, Geopolymer 2002 Conference, Saint-Quentin (France), Melbourne (Australia): Geopolymer Institute; (2002).
Google Scholar
[4]
V.F.F. Barbosa and K.J.D. Mackenzie, Synthesis and thermal behavior of potassium sialates geopolymers, Mater Lett. Vol. 57 (2003), p.1477.
Google Scholar
[5]
V.F.F. Barbosa and K.J.D. Mackenzie, Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate, Mater Res. Bull Vol. 38(2) (2003), p.319.
DOI: 10.1016/s0025-5408(02)01022-x
Google Scholar
[6]
L. J. Bell, E. P. Driemeyer and M. W. Kriven, Formation of ceramics from metakaolin-based geopolymers. Part I: Cs-based geopolymer, J. Am. Ceram. Soc Vol 92 (2009), pp.1-8.
DOI: 10.1111/j.1551-2916.2008.02790.x
Google Scholar
[7]
P. Duxson, G.C. Lukey, J.S.J. Van Deventer, Physical evolution of Na-geopolymer derived from metakaolin up to 1000oC, J. Mater. Sci. Vol. 42(9) (2007), p.3044.
DOI: 10.1007/s10853-006-0535-4
Google Scholar
[8]
P. Duxson, G.C. Lukey, and J.S.J. Van Deventer, Thermal evolution of metakaolin geopolymer: part1 – physical evolution, J. Non Cryst. Solid Vol. 352 (2006), p.5541.
DOI: 10.1016/j.jnoncrysol.2006.09.019
Google Scholar
[9]
L. J. Bell, E. P. Driemeyer and M. W. Kriven, Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer. J. Am. Ceram. Soc., Vol. 92 (2009), pp.607-615.
DOI: 10.1111/j.1551-2916.2008.02922.x
Google Scholar
[10]
Xu, H., and Van Daventer, J.S.J., The geopolymerization of alumino-silicate minerals. International Journal of Mineral Processing, 2000, Vol. 59; pp.247-266.
DOI: 10.1016/s0301-7516(99)00074-5
Google Scholar
[11]
Palomo, A., Grutzeck, M.W., and Blanco, M.T., Alkali-Activated Fly Ashes, A cement for the Future. Cement and Concrete Research, 1999, Vol. 29: pp.1323-1329.
DOI: 10.1016/s0008-8846(98)00243-9
Google Scholar
[12]
V.F.F. Barbosa, K.J.D. Mackenzie, C. Thaumaturgo, Synthesis and characterization of minerals based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int J. Inorg. Mater. Vol. 2 (2000), pp.309-317.
DOI: 10.1016/s1466-6049(00)00041-6
Google Scholar
[13]
A. Palomo, M.T. Blanco-Varela, M.L. Granizo, F. Puertas, T. Vazquez, and M.W. Grutzeck, Chemical stability of cementatious material based on metakaolin, Cem. Concr. Res. Vol. 29 (1999), p.997.
DOI: 10.1016/s0008-8846(99)00074-5
Google Scholar
[14]
J.C. Swanepoel, and C.A. Strydom, Utilisation of fly ash in a geopolymeric material, Appl. Geochemistry, Vol. 17 (2002), p.1143.
DOI: 10.1016/s0883-2927(02)00005-7
Google Scholar
[15]
T.W. Cheng, and J.P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag, Miner. Eng. Vol. 16(23) (2003), p.205.
DOI: 10.1016/s0892-6875(03)00008-6
Google Scholar
[16]
T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, and S.F. Yang The heavy metal adsorption characteristics on metkaolin-based geopolymer, Appl. Clay Sci. Vol. 56 (2012), p.90.
DOI: 10.1016/j.clay.2011.11.027
Google Scholar
[17]
T.H. Ueng, S.J. Lyu, H.W. Chu, H.H. Lee, and T.T. Wang, Adhesion at interface of geopolymer and cement mortar under compression: an experimental study, Constr. Build Mater. Vol. 35 (2012), p.204.
DOI: 10.1016/j.conbuildmat.2012.03.008
Google Scholar
[18]
E.N. Kani, A. Allahverdi, and J.L. Provis: Efflorescence control in geopolymer binders based on natural pozzolan, Cem. Concr. Compos. Vol. 34(1) (2012), p.25.
DOI: 10.1016/j.cemconcomp.2011.07.007
Google Scholar
[19]
J.G.S. Van Jaarsveld, J.S.J. van Daventer, and L. Lorenzen, The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers, Miner. Eng. Vol. 10 (1997) p.659.
Google Scholar
[20]
C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, and Y.M. Liew, Potential Application of kaolin without calcine as greener concrete: A Review, Aus. J. Basic and Appl. Sci. Vol. 5(7) (2011), p.1026.
DOI: 10.1016/j.conbuildmat.2011.12.079
Google Scholar
[21]
Z. Zhang, H., Wang, X., Yao, and Y., Zhu, Effect of halloysite in kaolin on the formation and properties of geopolymers, Cem Conct. Compos Vol. 34 (2012), p.709.
Google Scholar
[22]
Z. Zuhua, Y. Xiao, Z. HUajun, and C. Yue, Roles of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci. Vol. 43 (2009), p.218.
DOI: 10.1016/j.clay.2008.09.003
Google Scholar
[23]
A. Shvarzman, K. Kovler, G.S. Grader and G. E Shter, The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite, Cem. Concr. Res. Vol. 33 (2003), p.405.
DOI: 10.1016/s0008-8846(02)00975-4
Google Scholar
[24]
M.S. Prasad, K.J. Reid, and H.H. Murray, Kaolin: processing, properties and applications, Appl. Clay Sci. Vol. 6 (1991), p.87.
Google Scholar
[25]
C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. K. Nizar, C.M. Ruzaidi, and Y.M. Liew, Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers, Int. J. Miner. Metall. Mater. Vol. 20(3) (2013).
DOI: 10.1016/j.conbuildmat.2012.04.102
Google Scholar
[26]
J. Davidovits: Geopolymer Chemistry and Application. 2nd ed. Saint-Quentin, France: Institute of geopolymer: (2008).
Google Scholar
[27]
H. Xu, and J.S.J. Van Daventer, Microstructural characterization of geopolymer synthesized from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, Cemen. Concr. Res. Vol. 32 (2002), p.1705.
DOI: 10.1016/s0008-8846(02)00859-1
Google Scholar
[28]
K. Komnitsas, D. Zaharak, Geopolymerisation: a review and prospects for the mineral industry, Miner. Eng. Vol. 20 (2007), p.1261.
Google Scholar
[29]
H. Peigang, J. Dechang, W. Meirong and Z. Yu, Effect of high-temperature heat treatment on themechanical properties of unidirectional carbon fiber reinforced geopolymer composites, Ceram. Int. Vol. 36 (2010), p.2395.
Google Scholar
[30]
E. Y. Gutmanas, Materials with fine microstructures by advanced powder metallurgy, Prog. Mater. Sci. Vol. 34 (1990), p.261.
Google Scholar
[31]
N. Xie, L. J. Bell, M. Gordon, Fabrication of structureal leucite glass-ceramic from potassium-based geopolymer precursor, J. Am. Ceram. Soc., Vol. 93 (2010), p.2644.
DOI: 10.1111/j.1551-2916.2010.03794.x
Google Scholar
[31]
H. Peigang, and J. Dechang, and W. Shengjin, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor, J. Euro. Ceram. Soc., Vol. 33 (2013), p.689.
DOI: 10.1016/j.jeurceramsoc.2012.10.019
Google Scholar
[32]
H. Peigang, and J. Dechang, Low temperature sintered pollucite ceramic from geopolymer precursor synthetic metakaolin, J. Mater. Sci. Vol. 48 (2013), p.1812.
DOI: 10.1007/s10853-012-6944-7
Google Scholar
[33]
W.M. Kriven, J. L. Bell, M. Gordon, Geopolymer alkali bonded ceramics (ABCs) for high- tech applications. Invited lecture presented at the 107th annual meeting of The American Ceramic Society, held in Baltimore, MD, April 10-13; (2015).
Google Scholar
[34]
B.G. Nair, Q. Zhao, and R.F. Cooper, Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applicatios, J Mater Sci. Vol. 42 (2007) p.3083.
DOI: 10.1007/s10853-006-0526-5
Google Scholar
[35]
C. Kuenzel, L.M. Grover, L. Vandeperre, A.R. Boccaccini and C.R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars, J. Euro. Ceram. Soc., Vol. 33 (2013) p.251.
DOI: 10.1016/j.jeurceramsoc.2012.08.022
Google Scholar