Density Functional Theory Study of the Interaction of Nitric Oxide with 3D Transition Metal Dimers

Article Preview

Abstract:

Density-functional theory (DFT) has been used to calculate the interaction of nitric oxide with 3d metal dimers (scandium through zinc) and determine the ground-state geometrical configurations and vibrational frequencies. Results are compared to the relevant experimental values and to other theoretical investigations when available, and the overall agreement has been obtained. On going from left to right side of the Periodic Table, the preference for the coordination mode of NO to transition-metal dimers is from side-on-bonded mode (Sc, Ti, V), via semibridging (Cr), to end-on-bonded mode (Mn, Fe, Co, Ni, Cu). The N-O stretching vibrational frequencies in the ground states of M2NO (M = Sc to Zn) increase generally from the left to the right side of the Periodic Table, whereas the N-O bond lengths decrease generally. The binding energies exhibit an overall decrease trend. These general trends in the interaction of nitric oxide with 3d metal dimers mirror the main features of NO adsorption on transition metal surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-148

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Andrews, A. Citra: Chem. Rev. Vol. 102 (2002), p.885.

Google Scholar

[2] W.A. Brown, D.A. King: J. Phys. Chem. B Vol. 104 (2000), p.2578.

Google Scholar

[3] T. Suzuki, M. Kurahashi and Y. Yamauchi: Sur. Sci. Vol. 507-510 (2002), p.181.

Google Scholar

[4] J. Gu, Y.Y. Yeo, L. Mao and D.A. King: Sur. Sci. Vol. 464 (2000), p.68.

Google Scholar

[5] S.Y. Wu, J.J. Ho: Phys. Chem. Chem. Phys. Vol. 12 (2010), p.13707.

Google Scholar

[6] A. Shiotrari, Y. Kitaguchi, H. Okuyama, S. Hatta and T. Aruga: Phys. Rev. Lett. Vol. 106 (2011), p.156104.

Google Scholar

[7] A. Rochefor, R. Fournier: J. Phys. Chem. Vol. 100 (1996), p.13506.

Google Scholar

[8] Y.L. Teng, M. Kohyama, M. Haruta and Q. Xu: J. Chem. Phys. Vol. 130 (2009), p.134511.

Google Scholar

[9] G.K. Ruschel, T.M. Nemetz, D.W. Ball: J. Mol. Struct. Vol. 384 (1996), p.101.

Google Scholar

[10] A. Citra, L. Andrews: J. Phys. Chem. A Vol. 104 (2000), p.8160.

Google Scholar

[11] A. Citra, L. Andrews: J. Phys. Chem. A Vol. 105 (2001), p.3042.

Google Scholar

[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al. Gaussian 09, Revision A. 1, Gaussian, Inc., Wallingford CT (2009).

Google Scholar

[13] A.M. James, P. Kowalczyk, E. Langlois, M.D. Campbell, A. Ogawa, B. Simard: J. Chem. Phys. Vol. 101 (1994), p.4485.

Google Scholar

[14] B. Simard, M.A. Lebeault-Dorget, A. Marijnissen, J.J. ter Meulen: J. Chem. Phys. Vol. 108 (1998), p.9668.

DOI: 10.1063/1.476442

Google Scholar

[15] M.F. Jarrold, A.J. Illies, M.T. Bowers: J. Am. Chem. Soc. Vol. 107 (1985), p.7339.

Google Scholar

[16] E.A. Rohlfing, D.M. Cox, A. Kaldor, K.H. Johnson: J. Chem. Phys. Vol. 81 (1984), p.3846.

Google Scholar

[17] D.A. Hales, C.X. Su, L. Lian, P.B. Armentrout: J. Chem. Phys. Vol. 100 (1994), p.1049.

Google Scholar

[18] J.C. Pinegar, J.D. Langenberg, C.A. Arrington, E.M. Spain, M.D. Morse, J. Chem. Phys. Vol. 102 (1995), p.666.

Google Scholar

[19] A.S. Sappey, J.E. Harrington, J.C. Weisshaar: J. Chem. Phys. Vol. 91 (1989), p.3854.

Google Scholar

[20] S.W. Buckner, J.R. Gord, B.S. Freiser: J. Chem. Phys. Vol. 88 (1988), p.3678.

Google Scholar