Crack-Healing Function of Nano-Ni/(ZrO2+Al2O3) Hybrid Materials

Article Preview

Abstract:

Ni/(ZrO2+Al2O3) nanocomposites have excellent mechanical properties, as well as self-healing function. The powder preparation was conducted by drying slurry consisting of distilled water, Al2O3, 3 mol % Y2O3 doped ZrO2 and nickel nitrate. After reduction at 600°C in a stream of Ar-1% H2, the powder mixture was consolidated by pulsed electric current sintering (PECS) at 1300°C for 5 min under 50 MPa. Surface cracks were generated by Vickers indentation on the polished surface of the test samples. Ni/(YZ+Al2O3) shows 1200 MPa in bending strength and 6.1 MPa m1/2 in facture toughness. Crack-healing and oxidation tests were conducted at temperature ranging from 1100 to 1300°C in air. As a result, crack-disappearance occurred slightly faster than that of Ni/Al2O3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-182

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Sawaguchi, K. Toda, K. Niihara: J. Ceram. Soc. Japan Vol. 99.

Google Scholar

[6] (1991), p.510.

Google Scholar

[2] T. Sekino, T. Nakajima, T. Ueda, K. Niihara: J. Amer. Ceram. Soc. Vol. 80 (1997), p.1139.

Google Scholar

[3] W. P. Tai, T. Watanabe: J. Mater. Sci. Vol. 33 (1998), p.5795.

Google Scholar

[4] O. Abe, Y. Ohwa, Y. Kuranobu: J. Euro. Ceram. Soc. Vol. 26 (2005), p.689.

Google Scholar

[5] M. C. Chu, S. Sato, Y. Kobayashi, K. Ando: Fatig. Fract. Eng. Mater. Struct. Vol. 18 (1995), p.1019.

Google Scholar

[6] A. L Salas-Villasenor, J. Lemus-Ruiz, M. Nanko, D. Maruoka: Adv. Mater. Res. Vol. 68 (2009), p.34.

Google Scholar

[7] D. Maruoka, T. Itaya, T. Misaki, M. Nanko: Mater. Trans. Vol. 53 (2012), p.1816.

Google Scholar

[8] D. Maruoka, M. Nanko: Mater. Trans. Vol. 51 (2010), p.1570.

Google Scholar

[9] D. Maruoka, M. Nanko: Mater. Trans. Vol 696 (2011), p.378.

Google Scholar

[10] D. Maruoka, M. Nanko: Ceram. Int. Vol. 39 (2013), p.3221.

Google Scholar

[11] R. Z. Chen, Y. T. Chiu, W. H. Tuan: J. Euro. Ceram. Soc. Vol. 20 (2000), p. (1901).

Google Scholar

[12] K. Niihara, R. Morena, D. P. H. Hasselman: J. Mater. Sci. Lett. Vol. 1 (1982), p.13.

Google Scholar

[13] R. Z. Chen, W. H. Tuan: J. Euro. Ceram. Soc. Vol. 19.

Google Scholar

[4] (1999), p.463.

Google Scholar

[14] J. Lu, L. Gao, J. Sun, L. Gui, L. Guo: Mater. Sci. Eng. A Vol. 293.

Google Scholar

[1] (2000), p.223.

Google Scholar

[15] B. S. Kim, T. Sekino, T. Nakayama, M. Wada, J. S. Lee, K. Niihara: Mater. Res. Innov. Vol. 7.

Google Scholar

[2] (2003), p.57.

Google Scholar

[16] R. G. Munro: J. Am. Ceram. Soc. Vol. 80.

Google Scholar

[8] (1997), p. (1919).

Google Scholar