Study on the Microstructure and Biocompatibility of Inositol Hexakisphosphate-Modified Titanium Surface

Article Preview

Abstract:

The surface topography and biocompatibility of titanium mesh treated with inositol hexakisphosphate (IP6) was studied. At high concentration of IP6, micro-grooved titanium surface with width of ~ 8 μm was formed. Then, calcium phosphate coating was deposited on the micro-grooves by a second hydrothermal treatment. Furthermore, cell culture results showed that micro-grooved surface could guide cell elongation and stretching along the grooves. Calcium phosphate modified micro-grooved titanium surface enhanced the cell viability compared with the unmodified surface. Therefore, IP6 modification may be a good candidate for improving the biocompatibility of titanium implants.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

507-513

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Tschernitschek, L. Borchers and W. Geurtsen: J. Prosthet. Dent. Vol. 96 (2006) No. 1, p.12.

Google Scholar

[2] L. Le Guéhennec, A. Soueidan, P. Layrolle and Y. Amouriq: Dent. Mater. Vol. 23 (2007) No. 7, p.844.

DOI: 10.1016/j.dental.2006.06.025

Google Scholar

[3] S.F. Lamolle, M. Monjo, M. Rubert, H.J. Haugen, S.P. Lyngstadaas and J.E. Ellingsen: Biomaterials Vol. 30 (2009) No. 5, p.736.

DOI: 10.1016/j.biomaterials.2008.10.052

Google Scholar

[4] A. Wennerberg and T. Albrektsson: Clin. Oral Implan. Res. Vol. 20 (2009) No. S4, p.172.

Google Scholar

[5] H. Schliephake, A. Aref, D. Scharnweber, S. Bierbaum and A. Sewing: Clin. Oral Implan. Res. Vol. 20 (2009) No. 1, p.38.

Google Scholar

[6] S.Y. Kim, N. Oh, M.H. Lee, S.E. Kim, R. Leesungbok and S.W. Lee: Oral Implan. Res. Vol. 20 (2009) No. 3, p.262.

Google Scholar

[7] S. Ban, H. Kono, H. Sato, Y. Iwaya, A. Yuda and Y. Izumi: Dent. Mater. J. Vol. 23 (2004), p.347.

Google Scholar

[8] S. Ban, Y. Iwaya, H. Kono and H. Sato: Dent. Mater. Vol. 22 (2006) No. 12, p.1115.

Google Scholar

[9] J.E. Ellingsen, P. Thomsen and S.P. Lyngstadaas: Periodontol. 2000 Vol. 41 (2006) No. 1, p.136.

Google Scholar

[10] J. Guo, R.J. Padilla, W. Ambrose, I.J. De Kok and L.F. Cooper: Biomaterials Vol. 28 (2007) No. 36, p.5418.

Google Scholar

[11] X. Lu, Z. Zhao and Y. Leng: Mat. Sci. Eng. C Vol. 27 (2007) No. 4, p.700.

Google Scholar

[12] J.W. Park, J.H. Jang, C.S. Lee and T. Hanawa: Acta Biomater. Vol. 5 (2009) No. 6, p.2311.

Google Scholar

[13] Q. Liu, J. Ding, F.K. Mante, S.L. Wunder, G.R. Baran: Biomaterials Vol. 23 (2002) No. 15, p.3103.

Google Scholar

[14] C. Ye, Y. Zheng, S. Wang, T. Xi and Y. Li: Appl. Surf. Sci. Vol. 258 (2012) No. 8, p.3420.

Google Scholar

[15] X. Cui, Q. Li, Y. Li, F. Wang, G. Jin and M. Ding: Appl. Surf. Sci. Vol. 255 (2008) No. 5, p. (2098).

Google Scholar

[16] G. Meng, F. Sun, Y. Shaoa, T. Zhang, F. Wang, C. Dong and X. Li: Electrochim. Acta Vol. 55 (2010) No. 20, p.5990.

Google Scholar

[17] C.D. Zhang, D.Q. Xiao, Y.K. Fu, K. Duan, X. Lu and J. Weng: Key Eng. Mater. Vol. 575 (2014), p.253.

Google Scholar

[18] J. O'Brien, I. Wilson, T. Orton and F. Pognan: Eur. J. Biochem. Vol. 267 (2000) No. 17, p.5421.

Google Scholar

[19] L. Gao, C. Zhang, M. Zhang, X. Huang and X. Jiang: J. Alloy. Compd. Vol. 485 (2009) No. 1, p.789.

Google Scholar

[20] J. Lu, M.P. Rao, N.C. MacDonald, D. Khang and T.J. Webster: Acta Biomater. Vol. 4 (2008) No. 1, p.192.

Google Scholar

[21] J. Chen, J. Ulerich, E. Abelev, A. Fasasi, C. Arnold and W. Soboyejo: Mat. Sci. Eng. C Vol. 29 (2009) No. 4, p.1442.

Google Scholar

[22] D. Liu, K. Savino and M.Z. Yates: Surf. Coat. Tech. Vol. 205 (2011) No. 16, p.3975.

Google Scholar

[23] H. Zhao, W. Dong, Y. Zheng, A. Liu, J. Yao, C. Li, W. Tang, B. Chen, G. Wang and Z. Shi: Biomaterials Vol. 32 (2011) No. 25, p.5837.

Google Scholar