Novel Efficient Synthesis of Glycol Monoethers over Highly Active Tungsten-Containing Mesoporous Molecular Sieve SBA-15

Article Preview

Abstract:

A tungsten-containing mesoporous molecular sieve SBA-15 (W-SBA-15) was synthesized directly by the hydrolysis of tetraethylorthosilicate and ammonium tungstate with triblock copolymer EO20PO70EO20 (P123) as template in acidic medium. The W-SBA-15 was characterized by XRD, N2 adsorption/desorption, UV-Vis spectroscopy, Raman spectroscopy and ICP-AES spectrometry. The W-SBA-15 exhibited high catalytic activity for the hydroxylation of cyclohexene with hydrogen peroxide (H2O2) as oxidant. The complete conversion of cyclohexene into glycol monoethers with very high selectivity (92.6%) were obtained over the W-SBA-15 catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

514-519

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Niccolai, L. Tarsi and R.J. Thomas, Chem. Commun. (1997) 2333.

Google Scholar

[2] D. Basavaiah and P.R. Krishna, Tetrahedron, 50 (1994) 10521.

Google Scholar

[3] K. Laumen, R. Seemayer and M.P. Schneider, J. Chem. Soc. Chem. Commun. (1990) 49.

Google Scholar

[4] H. Honig and P. Seufer-Wasserthal, Synthesis 12 (1990) 1137.

Google Scholar

[5] L.F. Hodson, T.M. Parker and D. Whittaker, J. Chem. Soc. Chem. Commun. (1993) 1427.

Google Scholar

[6] N. Iranpoor and P. Salehi, Synthesis 11 (1994) 1152.

Google Scholar

[7] K. Weissermal, H.J. Arpe, Industrial Organic Chemistry Verlag Chemie, New York, (1978).

Google Scholar

[8] M. Mugdan, D.P. Young, J. Chem. Soc. (1949) 2988.

Google Scholar

[9] Z. Zhang, J. Suo, X. Zhang, S. Li, Chem. Commun. (1998) 241.

Google Scholar

[10] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279 (1998) 548.

Google Scholar

[11] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120 (1998) 6024.

Google Scholar

[12] Y. Yue, A. Gedeon, J.L. Bonardet, J.B. D' Espinose, J. Fraissard and N. Melosh, Chem. Commun. (1999)(1967).

Google Scholar

[13] Y. Han, F.S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li, S. Lin, F. Deng, X. Ai, J. Phys. Chem. B 105 (2001) 7963.

Google Scholar

[14] B.L. Newalkar, J. Olanewaju, S. Komarneni, Chem. Mater. 13 (2001) 552.

Google Scholar

[15] W.H. Zhang, J. Lu, B. Han, M. Li, J. Xiu, P. Ying, C. Li, Chem. Mater. 14 (2002) 3413.

Google Scholar

[16] R. Szostak, Molecular sieves: Principles of Synthesis and Identification, Van Nostrand Reinhold, New York, 1989; pp.211-238.

Google Scholar

[17] A. Corma, Chem. Rev. 97 (1997) 2373.

Google Scholar

[18] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57(1985) 603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[19] J. Xin, J.S. Suo, X.M. Zhang, Z.R. Zhang, New J. Chem. 24 (2000) 569.

Google Scholar

[20] X. L. Yang, W. L. Dai, H. Chen, Y. Cao, H. X. Li, H. Y. He, K. N. Fan, J. Catal. 229(2005)259.

Google Scholar

[21] T. I. Bhuiyan, P. Arudra, M. N. Akhtar, A. M. Aitani, R. H. Abudawoud, M. A. Al-Yami, S. S. Al-Khattaf, Applied. Catal. A, 467(2013)224.

DOI: 10.1016/j.apcata.2013.07.034

Google Scholar