Synthesis and Characterization of Biomedical Aliphatic Polyurethane Material

Article Preview

Abstract:

Biomedical transparent poly(carbonate-urethane) elastomers were synthesized by melting pre-polymer method, using 4,4’-methylenebis (cyclohexyl isocyanate)(H12MDI) and chain extender (butadiene)(BDO) as hard segment, poly(1,6-hexanediol) carbonate diols(PCDL) as soft segment, and dibutyltin dilaurate as catalyst.The effects of molar ratio of the reactants on mechanical properties of PCU were studied and the relationship between micro-phase separation structure and properties was analyzed by the contact angle determination, total reflection fourier transform infrared spectrography(ATR-FTIR), differential scanning calorimeter(DSC),gel permeation chromatograph (GPC), mechanical property test. The comparative analysis was made between the prepared material and commercial medical polyurethane materials, showing the prepared poly(carbonate-urethane) elastomers was better in mechanical properties. As a elastic biomedical material, it has a great potential for developments and applications in biomedical materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

520-526

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.D. Zhang, A.J. Shih and E. Levin: Annals of the CIRP, Vol. 43 (1994) No. 3, p.305.

Google Scholar

[1] Szycher, Michael, Arthur A. Siciliano, and Andrew M. Reed. Polymeric Biomaterials. New York: Marcel Dekker(1994), p.233.

Google Scholar

[2] Howard, Gary T. International Biodeterioration & Biodegradation Vol. 49 (2002), p.245.

Google Scholar

[3] Harris,J. M. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications (1992) Plenum Press: New York.

DOI: 10.1007/978-1-4899-0703-5_1

Google Scholar

[4] Pinchuk L. . Journal of Biomaterials Science: Polymer Edition, Vol. 6 (1994) No. 3, p.225.

Google Scholar

[5] Labrow R S, Erfle D J, Santerre J P. Biomaterials, Vol. 17 (1996) No. 17, p.2381.

Google Scholar

[6] Szycher M, Reed A M, Siciliano A A. Journal of Biomaterials Applications, Vol. 6 (1991) No. 2, p.110.

Google Scholar

[7] Zhao Q, Topham N, Anderson J M, et al. Journal of Biomedical Materials Research, Vol. 25 (1991) No. 2, p.177.

Google Scholar

[8] Simmons A, Hyvarinen J, Odell R A, et al. Biomaterials, Vol. 25 (2004), p.4887.

Google Scholar

[9] Tang Y W, Labow R S, Santerre J P. Journal of Biomedical Materials Research Part A, Vol. 56 (2001)No. 4, p.516.

Google Scholar

[10] Christenson E M, Dadsetan M, Wiggins M, et al. Journal of Biomedical Materials Research Part A, Vol. 69(2004)No. 3, p.407.

Google Scholar

[11] Szycher Michael, Poirier Victor L., Dempsey Donald J, Elastomer. Plast. Vol. 15(1983), p.81.

Google Scholar

[12] Batich, Biomedical Materials, Vol. 23(1989), p.311.

Google Scholar

[13] Daka Joseph N, Caw la Attar S, Immobil. Biotechnol, Vol. 21(1993), p.23.

Google Scholar

[14] Datich C, Cheng C, Johnson C, Toxicol. Appl. Pharmacol, Vol. 46(1978), p.4453.

Google Scholar

[15] Sigrist, H., Collioud, A., Clemennce,J., Gao, H., Sanger, M., and Sundarababu, G., Opt. Eng. Vol. 35(1995), p.2339.

Google Scholar

[16] Szycher Michael, Poirier V L, Medical Device and Diagnostic Industry, Vol. 6(1984)No. 6, p.44.

Google Scholar

[17] Cha, G. S., Liu, D., Meyerhoff, M. E., Cantor, H. C., Midgley, A. R., Goldberg, H.D., and Brown, R.B. Anal. Chem. Vol. 63(1991), p.1666.

Google Scholar

[18] Espadas-Torre, C., and Meyerhoff, M. E. Anal. Chem. Vol. 67(1995)67, p.3108.

Google Scholar

[19] Brooks,K. A., Allen, J. R., Feldhoff, P.W., and Bachas, L. G., Anal. Chem. Vol. 68(1996), p.1439.

Google Scholar

[20] Kuijpens, J. M. H., Kardaun, G. A., Blezer, R., Pijpers, A, P., and Koole, L.H.,J. Am. Chem. Soc. Vol. 117(1995), p.8691.

DOI: 10.1021/ja00139a001

Google Scholar