Solution-Temperature-Controlled Growth of Microarc Oxidation Coatings on Aluminum Substrates

Article Preview

Abstract:

The growth of microarc oxidation (MAO) coatings on aluminum substrates was controlled via changing solution temperature from 10 to 60 °C. The results show that an elevation of the temperature lowers the applied voltage and the coating thickness. The coating formed in low-temperature solution demonstrates large-sized pores and contains lots of elements only originating from solute such as P, W, and V. On the contrary, numerous small-sized pores disperse homogeneously on the coating synthesized in high-temperature solution. It is assumed that the variation of solution temperature affects the dissolving capacity of the alkaline solution and the adsorptive capacity of solute anions, thus dominating the growth behaviors of MAO coating.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

578-582

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin and A. Matthews: Surf. Coat. Technol., Vol. 149 (2002), p.245.

Google Scholar

[2] P.B. Srinivasan, C. Blawert and W. Dietzel: Mater. Sci. Eng. A, Vol. 494 (2008), p.401.

Google Scholar

[3] W.B. Xue, Q. Jin, Q.Z. Zhu, M. Hua and Y.Y. Ma: J. Alloy Compd., Vol. 482 (2009), p.208.

Google Scholar

[4] X.H. Wu, W. Qin, Y. Guo and Z.Y. Xie: Appl. Surf. Sci., Vol. 254 (2008), p.6395.

Google Scholar

[5] J.M. Lee, S.B. Kang and J.M. Han: Wear, Vol. 264 (2008), p.75.

Google Scholar

[6] C.E. Barchiche, E. Rocca, C. Juers, J. Hazan and J. Steinmetz: Electrochim. Acta, Vol. 53 (2007), p.417.

DOI: 10.1016/j.electacta.2007.04.030

Google Scholar

[7] F. Chen, H. Zhou, B. Yao, Z. Qin and Q.F. Zhang: Surf. Coat. Technol., Vol. 201 (2007), p.4905.

Google Scholar

[8] D.Q. Wei, Y. Zhou, Y.M. Wang and D.C. Jia: Appl. Surf. Sci., Vol. 253 (2007), p.5045.

Google Scholar

[9] G.H. Lv, H. Chen, W.C. Gu, L. Li, E.W. Niu, X.H. Zhang and S.Z. Yang: J. Mater. Process. Technol., Vol. 208 (2008), p.9.

Google Scholar

[10] P.B. Su, X.H. Wu, Y. Guo and Z.H. Jiang: J. Alloy Compd., Vol. 475 (2009), p.773.

Google Scholar

[11] C.B. Wei, X.B. Tian, S.Q. Yang, X.B. Wang, R.K.Y. Fu and P.K. Chu: Surf. Coat. Technol., Vol. 201 (2007), p.5021.

Google Scholar

[12] H.P. Duan, C.W. Yan and F.H. Wang: Electrochim. Acta, Vol. 52 (2007), p.3785.

Google Scholar

[13] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S.J. Dowey: Surf. Coat. Technol., Vol. 122 (1999), p.73.

Google Scholar

[14] X.T. Sun, Z.H. Jiang, S.G. Xin and Z.P. Yao: Thin Solid Films, Vol. 471 (2005), p.194.

Google Scholar

[15] W.C. Gu, G.H. Lv, H. Chen, G.L. Chen, W.R. Feng, G.L. Zhang and S.Z. Yang: J. Mater. Process. Technol., Vol. 182 (2007), p.28.

Google Scholar

[16] J. Liang, L.T. Hu and J.C. Hao: Appl. Surf. Sci., Vol. 253 (2007), p.4490.

Google Scholar

[17] Y.M. Wang, T.Q. Lei, B.L. Jiang and L.X. Guo: Appl. Surf. Sci., Vol. 233 (2004), p.258.

Google Scholar

[18] J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer and W. Dietzel, Electrochim. Acta, Vol. 54 (2009), p.3842.

Google Scholar

[19] L.M. Chang: J. Alloy Compd., Vol. 468 (2009), p.462.

Google Scholar

[20] S. Moon and Y. Jeong: Corros. Sci., Vol. 51 (2009), p.1506.

Google Scholar

[21] K. Tillous, T. Toll-Duchanoy, E. Bauer-Grosse, L. Hericher and G. Geandier: Surf. Coat. Technol., Vol. 203 (2009), p.2969.

DOI: 10.1016/j.surfcoat.2009.03.021

Google Scholar

[22] W. Zhang, K.Q. Du, C.W. Yan and F.H. Wang: Appl. Surf. Sci., Vol. 254 (2008), p.5216.

Google Scholar

[23] L. Wang, X.Z. Jiang and Y.J. Liu: J. Hazard. Mater., Vol. 154 (2008), p.1106.

Google Scholar