The Preparation and Characterization of Zeolite LTA Membrane with Microwave-Assisted Method

Article Preview

Abstract:

A facial method to prepare zeolite LTA membrane via microwave-assisted heating method was reported. The A-type zeolite seeds were prepared by hydrothermal method from a precursor solution composed of A2O3:SiO2:Na2O:H2O with molar ratio of 1:5:40:1000. The optimized process parameters for synthesizing the zeolite seeds are reaction for 10 min, microwave power of 135 W, and the ratio of H2O/Na2O is 25. Zeolite LTA membrane was prepared via secondary growth method by microwave heating on the silicane and zeolite seed modified ceramic supports. The prepared zeolite seeds and membrane were characterized with X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and scanning electron microscopy (SEM). The results show that the size of the zeolite seeds are in the range of 100-400 nm with regular cubic morphology, and the zeolite membrane have homogeneous thickness of 1.5 μm and perfect morphology without defects and pinholes. The easy operation and controllable process make the zeolite membrane by this method properly have wide application for the gas sensor and devices.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

682-688

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Noack, P. Kolsch, R. Schafer, P. Toussaint, J. Caro: Chem. Eng. Technol, Vol. 25 (2002),P. 221.

Google Scholar

[2] A. S. Huang, J. Caro: J. Mater. Chem. Vol. 21(2011), p.11424.

Google Scholar

[3] G. Q. Zhu, Y. S. Li, H. Zhou, J. Liu: J. Membr. Sci. Vol. 337(2009), p.47.

Google Scholar

[4] E. E. McLeary, J. C. Jansen, F. Kapteijn: Microporous Mesoporous Mater. Vol. 90 (2006), p.198.

Google Scholar

[5] A. S. Huang, Q. Liu, N. Y. Wang, X. Tong, J. Caro: J. Membr. Sci. Vol. 437(2013), p.57.

Google Scholar

[6] L. C. Boudreau, J. A. Kuck, M. Tsapatsis: J. Membr. Sci. Vol. 152(1999), p.41.

Google Scholar

[7] M. A. Carreon, S. Li, J. L. Falconer, R. D. Noble: J. Am. Chem. Soc. Vol. 130(2008), p.5412.

Google Scholar

[8] L. Bonaccorsi, E. Proverbio: Microporous Mesoporous Mater. Vol. 112(2008), p.481.

Google Scholar

[9] Z. Pilter, S. Szabo, M. Hasznos-Nezdei: Microporous Mesoporous Mter, Vol. 40(2000), p.257.

DOI: 10.1016/s1387-1811(00)00171-2

Google Scholar

[10] Y. H. Ma, Y. J. Zhou, R. Poladi, E. Engwall, Sep: Purif. Technol. Vol. 25 (2001), p.235.

Google Scholar

[11] F. A. July, I. Polaret, L. Estel and L. B. Pierella: Microporous Mesoporous Mter, Vol. 198(2014) , p.22.

Google Scholar

[12] N. Kuanchertchoo, R. Suwanpreedee, D. Atong, K. Hemra, S. Wongkasemjit: Appl. Organomet. Chem. Vol. 21 (2007) , p.841.

DOI: 10.1002/aoc.1295

Google Scholar

[13] H. Katsuki, S. Furuta, S. Komarneni: J. Porous Mat. Vol. 8 (2001),P. 5.

Google Scholar

[14] Y .S. Li, W. S. Yang: J. Membr. Sci. Vol. 316(2008), p.3.

Google Scholar

[15] Edith M. Flanigen, Hassan Khatami: Infrared Structural Studies of Zeolite Frameworks (American Chemical SocietyWashingon, DC 1974), p.201.

Google Scholar

[16] Y. Z. Zhan, X. X. Li, Y. G. Zhang, Y.L. Chen: Ceram. Int. Vol. 39(2013), p.5997.

Google Scholar