Up-Conversion White Emission of β-NaYbF4:0.1%Tm3+,0.1%Er3+ under 980 nm Excitation

Article Preview

Abstract:

Rare-earth doped β-NaYbF4 upconversion phosphors were synthesized using a simple hydrothermal procedure. It is found that under 980 nm excitation β-NaYbF4:0.1%Tm are more efficient than β-NaYF4:20%Yb,0.1% that is known as one of the most effective upconversion materials. The unusual result may be related to the particles size. After introducing 0.1%Er3+ into the NaYbF4:0.1%Tm lattice, the upconversion white emission with color coordinate of (0.3016,0.3748) is obtained. The investigation of achieving mechanism indicates that besides the energy transfer from Yb3+ to Tm3+ and Er3+, respectively, there exists a new energy transfer process: 3F2,3 (Tm3+) + 4I11/2 (Er3+) → 3F4 (Tm3+) + 2H11/2/4S3/2 (Er3+).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

697-701

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Chung, S.Y. Lee, K.B. Shim and J.H. Ryu: Appl. Phys. Express, Vol. 5 (2012) 052602.

Google Scholar

[2] I. Etchart, M. Bérard, M. Laroche, A. Huignard, I. Hemández, W.P. Gillin, R.J. Curry and A. K. Cheetham: Chem. Commun., Vol. 47 (2011) 6263.

DOI: 10.1039/c1cc11427a

Google Scholar

[3] L.W. Yang, H.L. Han, Y.Y. Zhang and J.X. Zhong: J. Phys. Chem. C, Vol 113 (2009) 18995.

Google Scholar

[4] L.X. Sun, H. Gong, B.J. Chen, H. Lin and E.Y.B. Pun: J. Appl. Phys., Vol. 105 (2009) 106109.

Google Scholar

[5] D.Q. Chen, Y.S. Wang, K.L. Zheng, T.L. Guo, Y.L. Yu and P. Huang: Appl. Phys. Lett., Vol. 91 (2007) 251903.

Google Scholar

[6] S. Sivakumar, J.C. Boyer, E. Bovero and F.C.J.M. van Veggel: J. Mater. Chem., Vol. 19 (2009) 2392.

Google Scholar

[7] G. Glaspell, J. Adnerson, J.R. Wilkins and M.S. EI-Shall: J. Phys. Chem. C, Vol. 112 (2008) 11527.

Google Scholar

[8] S. Sivakumar, F.C.J.M. van Veggel and M. Raudsepp: J. Am. Chem. Soc., Vol. 127 (2005) 12464.

Google Scholar

[9] S.G. Xiao, X.L. Yang and J.W. Ding: J. Phys. Chem. C, Vol. 111 (2007) 8161.

Google Scholar

[10] O. Ehlert, R. Thomann, M. Darbandi and T. Nann: ACS Nano, Vol. 2 (2008) 120.

Google Scholar

[11] T. Pang, W.H. Cao, M.M. Xing, X.X. Luo and X.F. Yang: Opt. Mater., Vol. 33 (2011) 485.

Google Scholar

[12] Z.G. Chen, H.L. Chen, H. Hu, M.X. Yu, F.Y. Li, Q. Zhang, Z.G. Zhou, T. Yi and C.H. Huang: J. Am. Chem. Soc., Vol. 130 (2008) 3023.

Google Scholar

[13] T. Pang, W.H. Cao, M.M. Xing, W. Feng and S.J. Xu: Physica B, Vol. 405 (2010) 2216.

Google Scholar

[14] J.E.C. da Silva, G.F. de Sá and P.A. Santa-Cruz: J. Alloys. Comp., Vol. 344 (2002).

Google Scholar

[15] Y.X. Liu, C.F. Xu and Q.B. Yang: J. Appl. Phys., Vol. 105 (2009) 084701.

Google Scholar

[16] J. Yang, C.M. Zhang, C. Peng, C.X. Li, L.L. Wang, R.T. Chai and J. Lin: Chem. Eur. J., Vol. 15 (2009) 4649.

Google Scholar