Synthesis of Sr4Al14O25:Eu2+, Dy3+ via Using Cyclodextrin as Chelating Agent by Sol-Gel Method

Article Preview

Abstract:

Sr4Al14O25:Eu2+, Dy3+ luminescent phosphor was synthesized for the first time from using cyclodextrin as chelating agent by sol-gel method. The structural characterization, surface morphology and properties of the phosphor were studied. The results revealed that the target phosphor with relatively regular morphology, smaller grain size, pure phase and high crystallinity can be achieved at 1200°C for 4 h in a reducing atmosphere. The average grain size of the Sr4Al14O25:Eu2+, Dy3+ phosphor nanoparticles ranges from 50 to 100 nm . And the phosphorescence in blue-green (483 nm) by Eu2+.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

702-706

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Katsumata, T. Nabae, K. Sasajima, S. Komuro and T. Morikawa: Journal of the Electrochemical Society, Vol. 144 (1997) No. 9, p.243.

Google Scholar

[2] Y. Lin, Z. Zhang, F. Zhang, Z. Tang and Q. Chen: Chemistry and Physics, Vol. 65 (2000) No. 2, p.103.

Google Scholar

[3] E. Shafia, M. Bodaghi, S. Espostio and A. Aghaei: Ceramics International, Vol. 40 (2014) No. 3, p.4697.

Google Scholar

[4] H. Kanno, K. Noda and K. Matsui: Chemical Physics Letters, Vol. 580 (2013) No. 103, p.103.

Google Scholar

[5] P. Jha and B.P. Chandra: Journal of Luminescence, Vol. 143 (2013), p.280.

Google Scholar

[6] Z.X. Fu, L. Ma, S. Sahi, R. Hall, W. Chen: Journal of Luminescence, Vol. 143 (2013), p.657.

Google Scholar

[7] D.S. Kshatri, A. Khare, P. Jha: Optik, Vol. 124 (2013) No. 17, p.2974.

Google Scholar

[8] T.T. Lai, C.C. Chang, C.Y. Yang, S. Das and C.H. Lu: Ceramics International, Vol. 39 (2013) No. 1, p.159.

Google Scholar

[9] Z.F. Liu, Y.X. Li, Y.H. Xiong, D. Wang and Q.R. Yin: Microelectronics Journal, Vol. 35 (2004) No. 4, p.375.

Google Scholar

[10] B.F. dos Santos Jr, M.V. Dos Santos Rezende, P.J.R. Montes, R.M. Araujo, M.A.C. Dos Santos and M.E.G. Valerio: Journal of Luminescence, Vol. 132 (2012) No. 4, p.1015.

DOI: 10.1016/j.jlumin.2011.09.008

Google Scholar

[11] P. Zhang, M.X. Xu and L. Liu: Journal of Sol-Gel Science and Technology, Vol. 50 (2009) No. 3, p.267.

Google Scholar

[12] S.Y. Kaya, E. k. Karacaoglu and B. k. Karasu: Ceramics International, Vol. 38 (2012) No. 5, p.3701.

Google Scholar

[13] Nadezhina T. N, Pobedimskaya E. A, Belov N. V: kristallografiya, Vol. 21 (1976), p.862.

Google Scholar

[14] S.K. Sharma, S.S. Pitale, M.M. Malik, R.N. Dubey and M.S. Qureshi: Journal of Luminescence, Vol. 129 (2009) No. 2, p.140.

Google Scholar

[15] N. Thompson, P. Murugaraj, C. Rix, D.E. And Mainwaring: Journal of Alloys and Compounds, Vol. 537 (2012), p.147.

Google Scholar

[16] S.B. He, S.F. Wang, Q.P. Ding, X.D. Yuan: Chin. Phys, Vol. 22 (2013) No. 5, P. 102.

Google Scholar

[17] C.L. Zhao, D.H. Chen, Y.H. Yuan and M. Wu: Materials Science and Engineering, Vol. 133 (2006) No. 1-3, p.200.

Google Scholar

[18] M. Misevicius, O. Scit, I.G. Puroniene, G. Degutis, I. Bogdanoviciene and A. Kareiva: Ceramics International, Vol. 38 (2012) No. 7, p.5915.

DOI: 10.1016/j.ceramint.2012.04.042

Google Scholar

[19] Z. Chao. Wu, M.L. Gong, J.X. Shi and Q. Su: Journal of Alloys and Compounds, Vol. 458 (2008) No. (1-2), p.134.

Google Scholar

[20] H.N. Luitel, T. Watari, R. Chand, T. Torikai and M. Yada: Optical Materials, Vol. 31 (2009) No. 8, p.1200.

Google Scholar

[21] S.H. Han and Y.J. Kim: Optical Materials, Vol. 28 (2006) No. 6-7, p.626.

Google Scholar