Factors Affecting Optical Anisotropy Performance of Liquid Crystal Polymer with Photosensitive Group

Article Preview

Abstract:

A copolymer liquid crystal with a coumarin side group is synthesized and investigated. Under different exposure energy, the thin film of copolymer is irradiated by linearly polarized ultraviolet light (LPUV). Moreover, through changing exposure temperature and annealing temperature to investigate its photoreaction properties and reorientation performance. It is made clear that the value of optical anisotropy appears maximum with the increase of exposure energy. However, with the exposure temperature increasing, the Photo-Fries rearrangement tend to be occurred and the degree of the cyclo-addition reaction is reduced. Finally, dealing the exposed film with the liquid crystal temperature, the optical anisotropy of the film has cyclical change, but the maximum anisotropy remains nearly unchanged.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

719-723

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Moia, H. Seiberle and M. Schadt: Proc. SPIE2000, 3973, 196.

Google Scholar

[2] O'Neill, M. and Kelly, S. M. Photoinduced surface alignment for liquid crystal displays. J. Phys. D: Appl. Phys 33, R67–R84 (2000).

DOI: 10.1088/0022-3727/33/10/201

Google Scholar

[3] Yaroshchuk, O. and Reznikov, Y. Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. 22, 286–300 (2012).

DOI: 10.1039/c1jm13485j

Google Scholar

[4] Schadt, M., Seiberle, H. and Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 381, 212–215 (1996).

DOI: 10.1038/381212a0

Google Scholar

[5] Shannon, P. J., Gibbons, W. M. & Sun, S. T. Patterned optical properties in photopolymerized surface-aligned liquid-crystal films. Nature 368, 532–533 (1994).

DOI: 10.1038/368532a0

Google Scholar

[6] Kawatsuki, N. Photoalignment and photoinduced molecular reorientation of photosensitive materials. Chem. Lett. 40, 548–554 (2011).

DOI: 10.1246/cl.2011.548

Google Scholar

[7] Kawatsuki, N., Goto, K., Kawakami, T. and Yamamoto, T. Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films. Macromolecules 35, 706–713 (2002).

DOI: 10.1021/ma011439u

Google Scholar

[8] Chunki Kim, Anita Trajkovska, Jason U. Wallace and Shaw H. Chen, Macromolecules 2006, 39, 3817-3823.

Google Scholar

[9] (a) Coppinger, G. M. and Bell, E. R. J. Phys. Chem. 1966 , 70 , 3479 –3489. (b) Li, S. -K. L. and Guillet, J. E. Macromolecules 1977 , 10 , 840 –844. (c) Hofler, T., Griesser, T., Gstrein, X., Trimmel, G., Jakopic, G. and Kern, W. Polymer 2007 , 48 , 1930 –(1939).

Google Scholar

[10] Whitcombe, M. J., Gilbert, A. and Mitchell, G. R.J. Polym. Sci., Part A: Polym. Chem. 1992 , 30 , 1681 –1691.

Google Scholar

[11] (a) Singh, S., Creed, D. and Hoyle, C. E. Proc. SPIE 1992 , 1774 , 2–11. (b) Creed, D., Griffi n, A. C., Hoyle, C. E. and Venkataram, K. J. Am. Chem. Soc. 1990 , 112, 4049 –4050.

DOI: 10.1021/ja00166a058

Google Scholar