Stimuli Responsive Electrospun Fibres: Functions and Applications

Article Preview

Abstract:

Stimuli responsive electrospun fibers are obtained considerable attention as excellent functions and properties. An overview is given on recent advances made in the development from component to structure of electrospun fiber and applications in the aspects of physical and chemical stimuli. The specific features for these electrospun fibers are highlighted and applications are discussed as regeneration medical engineering and drug-releasing implants materials. Furthermore, the development of multi-component and multi-stimuli functions electrospun fiber is proposed in the future perspective

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

737-749

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Rayleigh. Philos. Mag., Vol. 14(1882), p.184.

Google Scholar

[2] J. F. Cooley. US Patent 692, 631. (1902).

Google Scholar

[3] W. J. Morton. US Patent 705, 691. (1902).

Google Scholar

[4] A. Formhals. US Patent 1, 975, 504. (1934).

Google Scholar

[5] G. I. Taylor. Proc. R. Soc. Ser. A., Vol. 280(1964), p.383.

Google Scholar

[6] J. Doshi, G. Srinivasan, D. Reneker Polym. News, Vol. 20(1995), p.206.

Google Scholar

[7] S. Cao, B. Hu and H. Liu. Polym. Int., Vol. 58(2009), p.545.

Google Scholar

[8] X. Jin, Y. -L Hsieh. Polymer, Vol. 46(2005), p.5149.

Google Scholar

[9] S. H. Kim, S. Nair and E. Moore. Macromolecules, 38(2005), p.3719.

Google Scholar

[10] D. N. Rockwood, D. B. Chase, R. E. Akins and J. F. Rabolt. Polymer, Vol. 49(2008), p.4025.

Google Scholar

[11] H. Okuzaki, K. Kobayashi, H. Yan. Macromolecules, Vol. 42(2009), p.5916.

Google Scholar

[12] M. L. Chen, M.D. Dong, R. Havelund, et al. Chem. Mater., Vol. 22(2010), p.4214.

Google Scholar

[13] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe. Nature, Vol. 388 (1997), p.431.

DOI: 10.1038/41233

Google Scholar

[14] J. Weidner. Drug Discov. Today, Vol. 6 (2001), p.1239.

Google Scholar

[15] A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe. Adv. Mater., Vol. 11 (1999), p.1365.

Google Scholar

[16] N. Wang, Y. Zhaoand L. Jiang. Macromol. Rapid Commun., Vol. 29 (2008), p.485.

Google Scholar

[17] C. H. Lee, S. K. Kang, J. A. Lim, H. S. Lim and J. H. Cho. Soft matter, Vol. 8 (2012), p.10238.

Google Scholar

[18] S. A. Jenekhe, J. A. Osaheni. Science, Vol. 265 (1994), p.765.

Google Scholar

[19] S. A. Jenekhe, L. X. Chen. Science, Vol. 283 (1999), p.372.

Google Scholar

[20] Kuo Chi-Ching, Tung Yi-Chih and Chen Wen-Chang. Macromol. Rapid Commun., Vol. 31 (2010), p.65.

Google Scholar

[21] X.Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Sarnuelson. Nano Lett., Vol. 2 (2002), P. 1273.

Google Scholar

[22] Y. Y. Long, H.B. Chen, Y. Yang, H.M. Wang, Y. F. Yang, N. Li, K. Li, J. Pei and F. Liu. Macromolecules, Vol. 42 (2009), P. 6501.

Google Scholar

[23] M. L. Chen, F. Besenbacher. ACS Nano, Vol. 5 (2011), P. 1549.

Google Scholar

[24] G. D. Fu, L. Q. Xu, F. Yao, K. Zhang, X. F. Wang, M. F. Zhu and S.Z. Nie. ACS Appl. Mater. Interfaces, Vol. 1 (2009), p, 239.

Google Scholar

[25] G. D. Fu, L. Q. Xu, F. Yao, G. L. Li, E.T. Kang. ACS Appl. Mater. Interfaces, Vol. 1 (2009), p.2424.

Google Scholar

[26] S. Mornet, S. Vasseur, F. Grasset and E. Duguet. J. Mater. Chem., Vol. 14 (2004), p.2161.

Google Scholar

[27] M. Wang, H. Singh, T. A. Hatton and G. C. Rutledge. Polymer, Vol. 45 (2004), p.5505.

Google Scholar

[28] P. Gupta, R. Asmatulu, R. Claus and G. Wilkes. J. Appl. Polym. Sci., Vol. 100 (2006), p.4935.

Google Scholar

[29] M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, J. H. Wendorff. Adv. Mater., Vol. 19 (2007), p.4244.

DOI: 10.1002/adma.200700849

Google Scholar

[30] O. Kriha, M. Becker, M. Lehmann, D. Kriha, J. Krieglstein, M. Yosef, S. Schlecht, R. B. Wehrspohn, J. H. Wendorff and A. Greiner. Adv. Mater., Vol. 19 (2007), p.2483.

DOI: 10.1002/adma.200601937

Google Scholar

[31] I. Savva, A. D. Odysseos, L. Evaggelou, O. Marinica, E. Vasile, L. Vekas, Y. Sarigiannis, and T K. Christoforou. Biomacromolecules, Vol. 14 (2013), p.4436.

DOI: 10.1021/bm401363v

Google Scholar

[32] P. G. Su, J. F. Tsai. Sensor Actuat B-Chem., Vol. 135 (2009), p.506.

Google Scholar

[33] X. F. Wang, B. Ding, J. Y. Yu, M. R. Wang and F. K. Pan. Nanotechnology, Vol. 21 (2010), p.055502.

Google Scholar

[34] P. Li, Y. Li, B.Y. Ying, M.J. Yang. Sensor Actuat B-Chem., Vol. 141 (2009), p.390.

Google Scholar

[35] Q.Q. Lin, Y. Li, M. J. Yang. Sensor Actuat B-Chem., Vol. 161 (2012), p.967.

Google Scholar

[36] Q.Q. Lin, Y. Li, M. J. Yang. Sensor Actuat B-Chem., Vol. 171–172 (2012), p.309.

Google Scholar

[37] G. Cui, J. H. Yoo, B. W. Woo, S. S. Kim, G. S. Cha and H. Nam. Talanta, Vol. 54 (2001), p.1105.

Google Scholar

[38] D. Aussawasathien, J. H. Dong and L. Dai. Synth. Met., Vol. 154 (2005), p.37.

Google Scholar

[39] Manesh K. M., Santhosh P., Gopalan A. and Lee K. P. Anal. Biochem., Vol. 360 (2007), p.189.

Google Scholar

[40] O. Böestman, H. Pihlajamaeki. Biomaterials, Vol. 21 (2000), p.2615.

Google Scholar

[41] L. Wang, C. Li, A. J. Ryan and S. P. Armes. Adv. Mater., Vol. 18 (2006), p.1566.

Google Scholar

[42] H. Yoshida, K. Klinkhammer, M. Matsusaki, M. Moller, D. Klee and M. Akashi. Macromol. Biosci., Vol. 9 (2009), p.568.

DOI: 10.1002/mabi.200990010

Google Scholar

[43] K. M. Sawicka, A. K. Prasad and P. I. Gouma. Sensor Letters, Vol. 3 (2005), p.31.

Google Scholar

[44] B. Ding, M. R. Wang, J. Y. Yu and G. Sun. Sensors, Vol. 9 (2009), p.1609.

Google Scholar

[45] J. W. Wang, C. Y. Chen and Y. M. Kuo. Polym. Adv. Technol., Vol. 19 (2008), p.1343.

Google Scholar

[46] Y. X. Zhang, J. J. Kim, D. Chen, H. L. Tuller and G. C. Rutledge. Adv. Funct. Mater., Vol. 24 (2014), p.4005.

Google Scholar

[47] W. Y. Wu, J. M. Ting, P. J. Huang. Nanoscale Res. Lett., Vol. 4 (2009), p.513.

Google Scholar

[48] Y. Zhang, X.L. He, J.P. Li, Z. J. Miao and F. Huang. Sens. Actuators, B, Vol. 132 (2008), p.67.

Google Scholar

[49] Q. Huang, M. E. Figueiredo-Pereira. Apoptosis, Vol. 15 (2010), p.1292.

Google Scholar

[50] Y. M. Kuo, Z. Li, Y. Jiao, et al. Hum. Mol. Genet., Vol. 19 (2010), p.1633.

Google Scholar

[51] D.Y. Yang, X. Liu, Y. Jin, et al. Biomacromolecules, Vol. 10 (2009), p.3335.

Google Scholar

[52] W. Z. Jia, Y. Wang, J. Basu, T. Strout, C. B. Carter, A. Gokirmak and Y. Lei. J. Phys. Chem. C, Vol. 113 (2009), p.19525.

DOI: 10.1021/jp905023e

Google Scholar

[53] L. Li and Y. L. Hsieh. Nanotechnology, Vol. 16 (2005), p.2852.

Google Scholar

[54] C. Subramanian, R. A. Weiss and Montgomery T. Shaw. Ind. Eng. Chem. Res., Vol. 52 (2013), p.15088.

Google Scholar

[55] H. Chen and Y. L. Hsieh. J. Polym. Sci., Part A: Polym. Chem., Vol. 42 (2004), p.6331.

Google Scholar

[56] H. Q. Liu, M. Zhen and R. H. Wu. Macromol. Chem. Phys., Vol. 208 (2007), p.874.

Google Scholar

[57] Y.C. Chiu, C. C. Kuo, J. C. Hsu, et al. ACS Appl. Mater. Interfaces, Vol. 2 (2010), p.3340.

Google Scholar

[58] Travis J. Sill, Horst A. von Recum. Biomaterials, Vol. 29 (2008), p. (1989).

Google Scholar

[59] J. J. Lv, L. Chen, Y. B. Zhu, L. Hou and Y. X. Liu. ACS Appl. Mater. Interfaces., Vol. 6 (2014), p.4954.

Google Scholar

[60] S. Liu, J. W. Zhao, H. J. Ruan, T. T. Tang, G. W. Liu, D. G. Yu, W. G. Cui and C. Y. Fan. Biomacromolecules, Vol. 13 (2012), p.3611.

Google Scholar

[61] S. N. Jayasinghe. Analyst, Vol. 138 (2013), p.2215.

Google Scholar

[62] E. Elisabeth, N. J. Suwan. Analyst, Vol. 139 (2014), p.4449.

Google Scholar

[63] R. Langer. Science, Vol. 293 (2001), p.58–59.

Google Scholar

[64] S. Abel, S. A. Moom, B. Manpreet, K. Tushar, Y. Wang and L. Dusan. J. Mater. Chem. B, Vol. 2 (2014), p.6157.

Google Scholar

[65] J. S. Im, B. Ch. Bai, Y. S. Lee. Biomaterials, Vol. 31(2010), p.1414.

Google Scholar

[66] H. Y. Li, Y. C. Xu, H. Xua and J. Chang. J. Mater. Chem. B, Vol. 2 (2014), p.5492.

Google Scholar