Structure Refinement and Dielectric Properties of Bismuth-Based Pyrochlores Containing Titanium

Article Preview

Abstract:

Bismuth-based pyrochlore dielectrics with the formula (Bi1.5Zn0.5)(Ti1.5M0.5)O7 (M = Nb, Ta and Sb) have been synthesized to investigate the influence of M between the dielectric properties and crystal structure. The XRD patterns show that all of the three samples give single phase. The refined data by GSAS program and the bond valence theory were used to analyze the differences in dielectric properties with occupation of different ions in B site. The dielectric constant of BZTS is the smallest in the BZTM, which is due to the polarizability and the contribution of BO6 octahedra which has weak correlation when Sb placed into the center of the octahedra would also result in small αε. When it comes to the moderate temperature range, oxygen vacancies migration was thermally activated as the carriers mechanism, and the different activation energies is related to the association and the disassociation of massive complex defects. The Rietveld refinement data pointed that with the respectively change of B ions, more oxygen vacancies and free oxygen ions are provided by structural defects to participate in the conduction which can lead to the σ increase gradually.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

770-777

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Valant, G. S. Babu, M. Vrcon, T. Kolodiazhnyi, and A. K. Axelsson, Pyrochlore Range from Bi2O3-Fe2O3-TeO3 System for LTCC and Photocatalysis and the Crystal Structure of New Bi3(Fe0. 56Te0. 44)3O11, J. Am. Ceram. Soc., 1–7 (2011).

DOI: 10.1111/j.1551-2916.2011.04801.x

Google Scholar

[2] D. P. Cann, C. A. Randall, and T. R. Shrout, Investigation of the Dielectric Properties of Bismuth Pyrochlores, Solid State Commun., 100.

DOI: 10.1016/0038-1098(96)00012-9

Google Scholar

[7] 529–34 (1996).

Google Scholar

[3] J. C. Nino, H. J. Youn, M. T. Lanagan, and C. A. Randall, Bi2O3 Solubility of Bi-Based Pyrochlores and Related Phases, J. Mater. Res., 17.

DOI: 10.1557/jmr.2002.0174

Google Scholar

[5] 1178–82 (2002).

Google Scholar

[4] J. C. Nino, I. M. Reaney, M. T. Lanagan, C. A. Randall, Transmission electron microscopy investigation of Bi2O3–ZnO–Nb2O5 pyrochlore and related phases, Materials Letters 57 (2002) 414–419.

DOI: 10.1016/s0167-577x(02)00802-9

Google Scholar

[5] R. A. M. Osman, A. R. West, Electrical characterization and equivalent circuit analysis of (Bi1. 5Zn0. 5)(Nb0. 5Ti1. 5)O7 Pyrochlore, a relaxor ceramic, J. Appl. Phys. 109, 0741061-8 (2011).

Google Scholar

[6] M. Valant, P. K. Davies, J. Am. Ceram. Soc. 83 (2000) 147.

Google Scholar

[7] M. Valant, P. K. Davies, J. Mater. Sci. 34 (1999) 5437.

Google Scholar

[8] H Du, X Yao, Xianfeng Zhang, Huimin Weng, Defect structure and dielectric properties of Bi-based pyrochlores probed by positron annihilation, Applied Surface Science 253 (2006) 1856–1860.

DOI: 10.1016/j.apsusc.2006.03.026

Google Scholar

[9] H Du, X Yao, Dielectric relaxation characteristics of bismuth zinc niobate pyrochlores containing titanium, Physica B 324 (2002) 121–126.

DOI: 10.1016/s0921-4526(02)01284-x

Google Scholar

[10] Huiling Du, Xiang Shi, Yu Cui, Defect structure and electrical conduction behavior of Bi-based pyrochlores, Solid State Communications, 2010(150) 1213~1216.

DOI: 10.1016/j.ssc.2010.04.008

Google Scholar

[11] Chi Chen, Weixing Cheng, Huiling Du, Research on the dielectric properties and fine structure of BZN-based pyrochlore ceramics, Electronic Components and Materials, 2007 2 49-51.

Google Scholar

[12] I. Levin, T.G. Amos, J.C. Nino, T.A. Vanderah, C.A. Randall, M.T. Lanaganand, Structural study of an unusual cubic pyrochlore Bi1. 5Zn0. 92Nb1. 5O6. 92, J. Solid State Chem. 168 (2002) 69–75.

DOI: 10.1006/jssc.2002.9681

Google Scholar

[13] N. E. Brese, M. O. Keeffe, bond-valence parameters for solids[J], Acta Cryst, 1991(B47): 192~197.

Google Scholar

[14] B. Melot, E. Rodriguez, Th. Proffen, et al. Displacive disorder in three high high-k bismuth oxide pyrochlores. Materials Research Bulletin, 2006, 41(5): 961~966.

DOI: 10.1016/j.materresbull.2006.02.004

Google Scholar

[15] R. Kudesia, A. E. Mchale, R. L. Snyder, J. Am. Ceram. Soc. 77(1994)3215.

Google Scholar

[16] R. Christoffersen, P. K. Devis, X. Wei, ibid, 77(1994)1441.

Google Scholar

[17] H Du, X Yao, J. Materials Science, 15(2004)613-616.

Google Scholar

[18] Huiling Du, Xiang Shi, Yu Cui, Defect structure and electrical conduction behavior of Bi-based pyrochlores, Solid State Communications 150 (2010) 1213–1216.

DOI: 10.1016/j.ssc.2010.04.008

Google Scholar

[19] K. Prasad, K. Kumari, K. P. Chandra, K. L. Yadav, S. Sen, Dielectric relaxation and ac conductivity of WO3 added (Na1/2Bi1/2)TiO3 ceramic, Materials Science-Poland, Vol. 27, No. 2, 2009 373-384.

DOI: 10.1590/s0103-97332009000300010

Google Scholar

[20] B.P. Dasa, R.N.P. Choudhary, P.K. Mahapatra, Mater. Sci. Eng. B 104 (2003) 96.

Google Scholar

[21] W. Li, K. Chen, Y.Y. Yao, J.S. Zhu, Y.N. Wang, Appl. Phys. Lett. 85 (2004) 4717.

Google Scholar

[22] Z.Y. Wang, T.G. Chen, Phys. Stat. Sol. 3 (1998) 167.

Google Scholar

[23] Bauerle J E, Hrizo J, J. Phys. Chem. Solids, 1969 30 565-570.

Google Scholar

[24] Abelard P, Baumard J F, Phys Rev., 1982, B26, 1005-1017.

Google Scholar

[25] Badwal S P S, J. Mater. Sci., 1984, 19 1767-1776.

Google Scholar

[26] Solier J D, Perez-Jubindo M A, Dominguez-Rodriguez A, et al. J. Am. Ceram. Soc., 1989 72 1500-1502.

Google Scholar

[27] Badwal S P S, J. Am. Ceram. Soc., 1990 73 3718-3719.

Google Scholar