Recent Progress of Zn2SnO4-Based Dye Sensitized Solar Cells

Article Preview

Abstract:

Dye-sensitized solar cells (DSSCs) have attracted extensive attention owning to their simple preparation prcess, low cost, and relatively high energy conversion efficiency. At present, most researches are focused on TiO2-based DSSC and high powder conversion efficiency of over 12.3% has been obtained. As a potential candidate, Zn2SnO4 has drawn increasing attention for DSSCs due to its attractive electrical and optical properties (Eg = 3.6 eV, electron mobility of 10–15 cm2V-1s-1). In this article, we maily reviewed the recent progress of Zn2SnO4-based DSSCs and put forward ideas for designing new Zn2SnO4 materials in future application for DSSCs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

793-799

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zhao, A. Wang, M.A. Green and F. Ferrazza, Appl Phys Lett. 1998, Vol. 73, (1991).

Google Scholar

[2] B. O' Regan, M. Gratzel. Nature, 1991, Vol. 353, 737.

Google Scholar

[3] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc., 1993, Vol. 115, No. 14, 6382.

Google Scholar

[4] T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H.V. Ryswyk and J.T. Hupp, Energy Environ. Sci., 2008, Vol. 1, 66.

Google Scholar

[5] J.Y. Liao, B.X. Lei, D.B. Kuang and C.Y. Su, Energy Environ. Sci., 2011, Vol. 4, 4079.

Google Scholar

[6] Y.T. Shi, K. Wang, Y. Du, H. Zhang, J.F. Gu, C. Zhu, L. Wang, W. Guo, N. Wang, and T.L. Ma. Adv. Mater. 2013, Vol. 25, 4413.

Google Scholar

[7] A. Le Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, and S. Ramakrishna, J. Phys. Chem. C, 2010, Vol. 114, 21795.

Google Scholar

[8] H. Xu, X. Tao, D.T. Wang, Y.Z. Zheng, J.F. Chen, Electrochimica Acta. 2010, Vol. 55, 2280.

Google Scholar

[9] Q. Hou, Y.Z. Zheng, J.F. Chen, W.L. Zhou, J. Deng, X. Tao, J. Mater. Chem., 2011, Vol. 21, 3877.

Google Scholar

[10] Y.Z. Zheng, J.X. Zhao, H. Zhang, J.F. Chen, W.L. Zhou, X. Tao, Chem. Commun., 2011, Vol. 47, 11519.

Google Scholar

[11] Z.H. Dong, H. Ren, C.M. Hessel, Adv. Mater. 2014, Vol. 26, 905.

Google Scholar

[12] S. Yanagida, Y.H. Yu and K. Mansieki, Account. Chem. Res. 2009, Vol. 42, 1 No. 11, 827.

Google Scholar

[13] H, Nusbaumer, J.E. Moser, S.M. Zakeeruddin, J Phys Chem B, 2001, Vol. 105, 10461.

Google Scholar

[14] M. Gratzel, Inorg. Chem. 2005, Vol. 44, 6841.

Google Scholar

[15] J.J. Chen, L.Y. Lu and W.Y. Wang, J. Phys. Chem. C 2012, 116, 10841−0847.

Google Scholar

[16] S.M. Yang, H.Z. Kou, J.C. Wang, H.B. Xue and H.L. Han, J. Phys. Chem. C 2010, Vol. 114, 4245.

Google Scholar

[17] B. Tan, E. Toman, Y.G. Li, Y.Y. Wu, J. Am. Chem. Soc. 2007, Vol. 129, 4162.

Google Scholar

[18] T. Lana-Villarreal, G. Boschloo, A. Hagfeldt, J. Phys. Chem. C, 2007, Vol. 111, 5549.

Google Scholar

[19] Q.L. Dai, J.J. Chen, L.Y. Lu, J.K. Tang, W.Y. Wang, Nano Lett. 2012, Vol. 12, 4187.

Google Scholar

[20] S.H. Choi, D. Hwang, D.Y. Kim, Y. Kervella, P. Maldivi, S.Y. Jang, R. Demadrille, D. Kim, Adv. Funct. Mater. 2013, Vol. 23, 3146.

DOI: 10.1002/adfm.201203278

Google Scholar

[21] Y.F. Wang, K.N. Li, Y.F. Xu, H.S. Rao, C.Y. Su and D.B. Kuang, Nanoscale, 2013, Vol. 5, 5940.

Google Scholar

[22] Z.D. Li, Y. Zhou, J. Zhang, W.G. Tu, Cryst. Growth Des. 2012, Vol. 12, 1476.

Google Scholar

[23] P. Poudela and  Q.Q. Qiao, Nanoscale, 2012, Vol. 4, 2826.

Google Scholar

[24] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 2005, Vol. 4, 455.

Google Scholar

[25] S.Y. Huang, G. Schlichthorl, A.J. Nozik, M. Gratzel, A.J. Frank, J. Phys. Chem. B 1997, Vol. 101, 2576.

Google Scholar

[26] Z.D. Li, Y. Zhou, C.X. Bao, G.G. Xue, J. Y Zhang, J. G, T. Yu and Z. G Zou, Nanoscale, 2012, Vol. 4, 3490.

Google Scholar

[27] K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda and V.P.S. Perera, , Chem. Commun., 1999, 15-16.

Google Scholar

[28] S.K. Karuturi, J. Luo, C. Cheng, L. Liu, L.T. Su, A.I.Y. Tok, H.J. Fan, Adv. Mater. 2012, Vol. 24, 4157.

Google Scholar

[29] J. Tian, Q. Zhang, L. Zhang, R. Gao, L. Shen, S. Zhang, X. Qu, G. Cao, Nanoscale, 2013, Vol. 5, 936.

Google Scholar

[30] Y.F. Li, Y. Wang, C.Y. Chen, A.Y. Pang and M.D. Wei, Chem. Eur. J. 2012, Vol. 18, 11716.

Google Scholar

[31] T. Bora, H.H. Kyaw, J. Dutta, Electrochimica Acta, 2012, Vol. 68, 141.

Google Scholar

[32] B.H. Li, L.J. Luo, X. T, X.Y. Hu, L. Lu, J.B. Wang, Y.W. Tang, J. Alloy. Compd. 2011, Vol. 509, 2186.

Google Scholar

[33] L.B. Li, Y.F. Wang, H.S. Rao, W.Q. Wu, K. N Li, C.Y. Su, D.B. Kuang, ACS Appl. Mater. Interfaces, 2013, Vol. 5, 11865.

Google Scholar