Si/SiO2 Composite Negative Electrode Material for Lithium Ion Batteries

Article Preview

Abstract:

As lithium-ion battery anode materials, silicon has the highest specific capacity. In order to restrain pure silicon’s serious volume change and enhance its electrochemical performance, Si/SiO2 composites were prepared by using a convenient high energy ball-milling technique. The characteristics of the composites as anode material for rechargeable lithium-ion batteries were investigated by X-ray diffraction and scanning electron microscopy methods. The electrochemical performance of the anode material was studied, and it was found the composite anode had a high capacity of 1333 mAhg-1 in the first cycle and 400 mAhg-1 could still be obtained after 46 cycles. Such prepared materials displayed improved cycle life.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 809-810)

Pages:

781-786

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Peled, C. Menachem, D. Bar-Tow and A. Melman: Journal of the Electrochemical Society, 143 (1996) L4.

Google Scholar

[2] X. L. Chen, K. Gerasopoulos, J. C. Guo, A. Brown, C. S. Wang, R. Ghodssi and J.N. Culver: ACS Nano, 4 (2010) 5366.

DOI: 10.1021/nn100963j

Google Scholar

[3] M. Ge, J. Rong, X. Fang and C. Zhou: Nano Letters, 12 (2012) 2318.

Google Scholar

[4] L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn: J. Electrochem, Soc. 150 (2003) A1457-A1464.

DOI: 10.1149/1.1613668

Google Scholar

[5] H. S. Choi, J. G. Lee, H. Y. Lee, S. W. Kim and C. R. Park: Electrochim. Acta, 56 (2010) 790-796.

Google Scholar

[6] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L.B. Hu, W.D. Nix and Y. Cui: Nano Letters, 11(2011) 2949.

Google Scholar

[7] C.M. Park, Y.U. Kim, H. Kim and H. J. Sohn: J. Power Sources, 158 (2006) 1451-1455.

Google Scholar

[8] X. Zhou, Y. X. Yin, L. J. Wan and Y.G. Guo: Chem. Commun, 48 (2012) 2198.

Google Scholar

[9] H. C. Tao, L. Z. Fan and X.H. Qu: Electrochim. Acta, 71 (2012) 194.

Google Scholar

[10] X. L. Wang, W. Q. Han: ACS. Mater. Interfaces, 2 (2010) 3709.

Google Scholar

[11] A. M. Wilson, J. R. Dahn: J. Electrochem, Soc. 142 (1995) 326.

Google Scholar

[12] W. Wang, P. N. Kumta: ACS Nano, 4 (2010) 2233.

Google Scholar

[13] H. Wu, G.Y. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui: Nano Letters, 12 (2012) 904.

Google Scholar

[14] K. Shin, D. Park, H. Lim, Y. Sun and K. Suh: Electrochimica Acta, 58 (2011) 578.

Google Scholar

[15] F. Tuinstra, J. L. Koenig: J. Chem. Phys, 53 (1970) 1126.

Google Scholar

[16] L. Su, Z. Zhou and M. Ren: Chemical Communications, 46 (2010) 2590.

Google Scholar

[17] R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins and Y. Cui: J. Phys. Chem, 113 (2009) 11390.

Google Scholar