Role of the Physical Simulation for the Estimation of the Weldability of High Strength Steels and Aluminum Alloys

Article Preview

Abstract:

The physical simulation is an ultimate innovative way to develop the welding processes. The paper introduces the connection between weldability and physical simulation, hot-cracking sensibility, the Gleeble 3500 thermo-mechanical physical simulator, respectively. Four kinds of materials were investigated and different kinds of physical simulation test methods were made such as, identification of the Nil-Strength Temperature (NST), hot tensile tests (on heating and on cooling parts of the welding simulation curve are also investigated). Furthermore, Heat Affected Zone (HAZ) tests are being introduced. The future approaches of the research are also exposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-154

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Pohle, Zerstörende Werkstoffprüfung in der Schweisstechnik, Deutscher Verlag für Schweisstechnik DVS-Verlag GmbH, Düsseldorf, (1990).

Google Scholar

[2] K. E. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworths Monographs in Materials (BMM), Butterworths & Co (Publishers) Ltd., (1983).

Google Scholar

[3] U. Boese, D. Werner, H. Wirtz, Das Verhalten der Stähle beim Schweissen, Teil II: Anwendung. Deutscher Verlag für Schweisstechnik (DVS) GmbH, Düsseldorf, (1984).

DOI: 10.1002/cite.330530628

Google Scholar

[4] B. Buchmayr, Computer in der Werstoff- und Schweisstechnik: Anwendung von mathematischen Modellen, Deutscher Verlag für Schweisstechnik DVS-Verlag GmbH, Düsseldorf, (1991).

Google Scholar

[5] B. Yuan, W. N. Sharpe, Fatigue testing of microspecimens, in: G. Lütjering, H. Nowack (Eds. ) Proceedings of the Sixth International Fatigue Congress (FATIGUE'96), Pergamon, 1996. Vol. III. p.1943-(1948).

Google Scholar

[6] B. Verő, A fizikai szimuláció helye és szerepe a műszaki anyagtudományban, ISD DUNAFERR Műszaki Gazdasági Közlemények. 47 (2007) Issue 4 (148) 167-172. (In Hungarian. ).

Google Scholar

[7] B. Verő, A fizikai és matematikai szimuláció helye és szerepe a vaskohászati kutatás-fejlesztésben. ISD DUNAFERR Műszaki Gazdasági Közlemények. 48 (2008) Issue 3 (151) 114-116. (In Hungarian. ).

Google Scholar

[8] J. Adamiec, M Kalka, Brittleness temperature range of Fe-Al alloy, Journal of Achievements in Materials and Manufacturing Engineering (JAMME). 18 (2006) Issues 1-2, September-October 2, 43-46.

Google Scholar

[9] S. T. Mandziej, Physical Simulation of Metallurgical Processes, Materiali in technologije / Materials and technology. 44 (2010) Issue 3, 105-119.

Google Scholar

[10] R. Laitinen, D.A. Porter, L.P. Karjalainen, P. Leiviskä, J. Kömi, Physical Simulation for Evaluating Heat-Affected Zone Toughness of High and Ultra-High Strength Steels, Materials Science Forum. 762 (2013) 711-716.

DOI: 10.4028/www.scientific.net/msf.762.711

Google Scholar