[1]
H. Bhadeshia, R. Honeycombe, Steels, Microstructure and Properties, Third edition, Butterworth-Heinemann publications, Great Britain, (2006).
Google Scholar
[2]
L. Mosecker, A.S. Akbari, Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics, Sci. Technol. Adv. Mater. 14 (2013) 033001 (14pp).
DOI: 10.1088/1468-6996/14/3/033001
Google Scholar
[3]
A. Dumay, J. -P. Chateau, S. Allain, S. Migot, O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Materials Science and Engineering A 483–484 (2008) 184–187.
DOI: 10.1016/j.msea.2006.12.170
Google Scholar
[4]
L. Remy, A. Pineau, Temperature dependence of stacking fault energy in close-packed metals and, materials Science and Engineering, 36 (1978) 47 – 63.
DOI: 10.1016/0025-5416(78)90194-5
Google Scholar
[5]
S. Allain, J. -P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C Alloys, Mat. Sci. Eng. A 387-389 (2004) 158-162.
DOI: 10.1016/j.msea.2004.01.059
Google Scholar
[6]
L. Remy, A. Pineau, Twinning and strain-induced F.C.C. - H.C.P. transformation in the Fe-Mn-Cr-C system, Mater. Sci. Eng. 28, (1977) 99-107.
DOI: 10.1016/0025-5416(77)90093-3
Google Scholar
[7]
K. H. Kwon, B-C. Suh, S. Baik, Y-W. Kim, J-K. Choi, N.J. Kim, Deformation behavior of duplex austenite and ε martensite high-Mn steel, Sci. Technol. Adv. Mater. 14 (2013) 014204 (8pp).
DOI: 10.1088/1468-6996/14/1/014204
Google Scholar
[8]
A.S. Hamada, L.P. Karjalainen, Hot ductility behaviour of high-Mn TWIP steels, Materials Science and Engineering A 528 (2011) 1819–1827.
DOI: 10.1016/j.msea.2010.11.030
Google Scholar
[9]
O. Bouaziz, N. Gu, Modelling of TWIP effect on work-hardening, Materials Science and Engineering A319–321 (2001) 246–249.
DOI: 10.1016/s0921-5093(00)02019-0
Google Scholar
[10]
Benke M, Tranta F, Barkóczy P, Mertinger V, Daróczi L, Effects of heat flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation, Mat. Sci. Eng. A-Structural Materials Properties Microstrucure and Processing 481: pp.522-525. (2008).
DOI: 10.1016/j.msea.2007.01.184
Google Scholar
[11]
M. Benke, F. Tranta, P. Barkóczy, V. Mertinger, L. Daróczi, Supplement on "Effects of heat-flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation, Mat. Sci. Eng. A-Structural Materials Properties Microstrucure and Processing 527: (9) pp.2441-2443. (2010).
DOI: 10.1016/j.msea.2009.11.030
Google Scholar
[12]
L. Bracke Steels, Microstructure and Properties, Deformation behaviour of Austenitic Fe-Mn.
Google Scholar
[13]
L. Chen, H.S. Kim, S.K. Kim, B. C. de Cooman, Localized Deformation due to Portevin–LeChatelier Effect in 18Mn–0. 6C TWIP Austenitic Steel, ISIJ International, Vol. 47 (2007), No. 12, p.1804–1812.
DOI: 10.2355/isijinternational.47.1804
Google Scholar