Study on the Electrical Properties of CNT/Carbon Fiber Reinforced Composite

Article Preview

Abstract:

The effects of fiber orientation and volume fraction on electrical conductivity of unidirectional carbon fiber reinforced polymer (CFRP) were investigated. The unidirectional CFRP shows strong anisotropy in electrical properties. Composites with higher fiber volume fraction possess higher electrical conductivity, since the fibers are the only current path in the composites. Additionally, carbon nanotubes (CNTs) were mixed into the resin by high-pressure microfluidizer to improve the electrical properties of the composites. Results show that the electrical conductivity of the polymer matrix has been dramatically improved. The conductivity of CNTs modified CFRP composites is improved along fiber direction, while it remains at the same level in the transverse to fiber direction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-322

Citation:

Online since:

March 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Russ, S.S. Rahaterkar, K. Koziol, B. Farmer, H. Peng, Length-dependent electrical and thermal properties of carbon nanotube-loaded epoxy nanocomposites, Composites Science and Technology. 81(2013) 42-47.

DOI: 10.1016/j.compscitech.2013.03.011

Google Scholar

[2] J. Gou, Y. Tang, F. Liang, Z. Zhao, D. Firsich, J. Fielding, Carbon nanofiber paper for lightning strike protection of composite materials, Composites Part B: Engineering. 41(2010) 192-198.

DOI: 10.1016/j.compositesb.2009.06.009

Google Scholar

[3] H. Kawakami, P. Feraboli, Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites, Composites: Part A. 42 (2011) 1247-1262.

DOI: 10.1016/j.compositesa.2011.05.007

Google Scholar

[4] M. Gagne, D. Therriault, Lightning strike protection of composites, Progress in Aerospace Sciences. (2013).

Google Scholar

[5] M. Louis, S.P. Joshi, W. Brockmann, An experimental investigation of through-thickness electrical resistivity of CFRP laminates, Composites Science and Technology. 61(2001) 911-919.

DOI: 10.1016/s0266-3538(00)00177-9

Google Scholar

[6] N. Angelidis, C.Y. Wei, P.E. Irving, The electrical resistance respongse of continuous carbon fiber composite laminates to mechanical stain, Composites: Part A. 35 (2004) 1135-1147.

DOI: 10.1016/j.compositesa.2004.03.020

Google Scholar

[7] K.W. Tse, C.A. Moyer, S. Arajs, Electrical conductivity of graphite fiber-epoxy resin composites, Materials Science and Engineering. 49 (1981) 41-46.

DOI: 10.1016/0025-5416(81)90131-2

Google Scholar

[8] JBaur, E Silverman, Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications, MRS bulletin. 32 (2007) 328-334.

DOI: 10.1557/mrs2007.231

Google Scholar

[9] A. Moisala, Q. Li, I.A. Kinloch, A.H. Windle, Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites, Composites Science and Technology. 66 (2006) 1285-1288.

DOI: 10.1016/j.compscitech.2005.10.016

Google Scholar

[10] W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology. 69 (2009) 1486-1498.

DOI: 10.1016/j.compscitech.2008.06.018

Google Scholar

[11] N. Xie, Q. Jiao, C. Zang, Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites, Materials and Design. 31 (2010) 1676-1683.

DOI: 10.1016/j.matdes.2009.02.032

Google Scholar

[12] ASTM D4496 – 04, Standard test method for D-C resistance or conductance of moderately conductive materials.

Google Scholar

[13] J. Xiao, Y Li, W.X. Fan, A laminate theory of piezoresistance for composite laminates, Composites Science and Technology. 59(1999) 1369-1373.

DOI: 10.1016/s0266-3538(98)00176-6

Google Scholar

[14] N. Athanasopoulos, V. Kostopoulos, Prediction and experimental validation of the electrical conductivity of dry carbon fiber unidirectional layers, Composites: Part B. 42 (2011) 1578-1587.

DOI: 10.1016/j.compositesb.2011.04.008

Google Scholar

[15] R.H. Knibbs and J.B. Morris, The effects of fibre orientation on the physical properties of composites, Composites. 5. 5 (1974) 209-218.

DOI: 10.1016/0010-4361(74)90141-4

Google Scholar