Crack-Induced Stress Concentration Is Suppressed in Nacreous Composites

Article Preview

Abstract:

Linear elastic fracture mechanics (LEFM) indicates that crack-like flaws tend to intensify stress in brittle materials with stress intensity proportional to the square root of the crack size. Under given loading, monolithic brittle materials can only endure cracks smaller than a critical size. In this paper, however, our exploration into the stress state of nacreous composites shows that the crack-induced stress intensification/concentration and its dependence on crack size can be suppressed in composites with ‘brick-and-mortar’ structure. This feature can be attributed to the unique ‘brick-and-mortar’ (B-and-M) structure and the complementary dissimilarity between ‘brick’ (e.g. minerals) and ‘mortar’ (e.g. proteins) phases in mechanical properties. Our findings provide a profound insight into the origin of high strength and high toughness in nacreous composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-336

Citation:

Online since:

March 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Meyers, P.Y. Chen, A. Lin, Y. Seki, Biological materials: Structure and mechanical properties, Progress in Materials Science 53(2008), 1-206.

DOI: 10.1016/j.pmatsci.2007.05.002

Google Scholar

[2] A.P. Jackson, J.F.V. Vincent, R.M. Turner, The Mechanical Design of Nacre, Proceedings of the Royal Society of London Series B-Biological Sciences 234(1988), 415-440.

Google Scholar

[3] H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA 100(2003), 5597-5600.

DOI: 10.1073/pnas.0631609100

Google Scholar

[4] B. Ji, H. Gao, Mechanical properties of nanostructure of biological materials, J. Mech. Phys. Solids 52(2004), 1963-(1990).

Google Scholar

[5] H. Gao, B. Ji, M.J. Buehler, H. Yao, Flaw tolerant nanostructures of biological materials, In: W. Gutkowski, T.A. Kowalewski(Eds. ), Mechanics of the 21st Century, Springer, Dordrecht, Netherlands, 2005, pp.131-138.

DOI: 10.1007/1-4020-3559-4_7

Google Scholar

[6] H. Gao, S. Chen, Flaw tolerance in a thin strip under tension, Journal of Applied Mechanics, 72(2005), 732-737.

DOI: 10.1115/1.1988348

Google Scholar

[7] H. Gao, H. Yao, Shape insentitive optimal adhesion of nanoscale fibrillar structures, Proc. Natl. Acad. Sci. USA. 101(2004), 7851-7856.

DOI: 10.1073/pnas.0400757101

Google Scholar

[8] H. Yao, H. Gao, Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko, J. Mech. Phys. Solids 54(2006), 1120-1146.

DOI: 10.1016/j.jmps.2006.01.002

Google Scholar

[9] T. Zhang, X. Li, S. Kadkhodaei, H. Gao, Flaw insensitive fracture in nanocrystalline graphene, Nano Letter. 12(2012), 4605-4610.

DOI: 10.1021/nl301908b

Google Scholar

[10] H. Gao, Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials, International Journal of Fracture 138(2006), 101-137.

DOI: 10.1007/s10704-006-7156-4

Google Scholar

[11] Z. Zhang, Y.W. Zhang, H. Gao, On optimal hierarchy of load-bearing biological materials, Proc. R. Soc. B. 278(2011), 519-525.

DOI: 10.1098/rspb.2010.1093

Google Scholar

[12] G. Liu, B. Ji, K.C. Hwang, B.C. Khoo, Analytical solutions of the displacement and stress fields of the nanocomposite structure of biological materials, Composites Science and Technology 71(2011), 1190-1195.

DOI: 10.1016/j.compscitech.2011.03.011

Google Scholar

[13] B. Bar-on, H.D. Wagner, Mechanical model for staggered bio-structure, J. Mech. Phys. Solids 59(2011), 1965-1701.

Google Scholar

[14] B. Bar-on, H.D. Wagner, Elastic modulus of hard tissues, J. Biomech. 45(2012), 672-678.

Google Scholar

[15] I. Jäger, P. Fratzl, Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles, Biophysical Journal 79(2000), 1737-1746.

DOI: 10.1016/s0006-3495(00)76426-5

Google Scholar

[16] M.R. Begley, N.R. Philips, B.G. Compton, D.V. Wilbrink, R.O. Ritchie, M. Utz, Micromechanical models to guide the development of synthetic brick and mortar, composites, J. Mech. Phys. Solids 60(2012), 1545-1560.

DOI: 10.1016/j.jmps.2012.03.002

Google Scholar

[17] B. Chen, P.D. Wu, H. Gao, A characteristic length for stress transfer in the nanostructure of biological composites, Composites Science and Technology 69(2009), 1160-1164.

DOI: 10.1016/j.compscitech.2009.02.012

Google Scholar

[18] T.L. Anderson, Fracture Mechanics: fundamentals and applications, third ed. CRC Press, New York, (2005).

Google Scholar

[19] M. Sarikaya, J. Liu, I.A. Aksay, Nacre: Properties, crystallography, morphology and formation, In: M, Sarikaya, I.A. Aksay(Eds. ), Biomimetics: Desgin and Processing of Materials, American Institute of Physics, 1995, pp.35-90.

Google Scholar

[20] M. Sarikaya, K.E. Gunnison, M. Yasrebi, J.A. Aksay, Mechanical property-microstructural relationships in abalone shell, Mater. Res. Soc. Symp. Proc. 174(1990), 109-116.

DOI: 10.1557/proc-174-109

Google Scholar