Preparation and Optical Property of ZnS:Mn/XO2 (X=Ti, Si) Nanoparticles with Core/Shell Structure

Article Preview

Abstract:

In this paper, Mn2+ doped ZnS (ZnS:Mn) nanoparticles were prepared by co-precipitation method. And then different thickness of TiO2 and SiO2 inorganic shell were coated on prepared ZnS:Mn through the hydrolysis reaction of tetrabutyl titanate (TBOT) and tetraethyl orthosilicate (TEOS). ZnS:Mn crystal and core/shell structure were described by X-ray diffraction (XRD) and scanning electron microscope (SEM). Optical property of all ZnS:Mn/XO2 (X=Ti, Si) nanoparticles were investigated by photoluminescence (PL) spectrometer. The effect of Mn2+ concentration and XO2 (X=Ti, Si) shell thickness on luminescence intensity of ZnS:Mn/XO2 was studied. The results showed that with TiO2 and SiO2 shell thickening, Mn2+ emission of ZnS:Mn/XO2 samples increased first and then decreased. When the thickness of inorganic shell (molar ratio of shell and core amount) reached to 0.5 (TiO2) and 1.0 (SiO2), the optimal luminescence intensity was obtained. The emission of ZnS:Mn/TiO2 and ZnS:Mn/SiO2 was 2.0 and 1.5 times more in intensity than that of uncoated ZnS: Mn, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

376-383

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.P. Jia, Y.H. He, J.C. Tang, Y.D. Deng, B.Y. Huang and Y.X. Liu, Mater. Rev. 16 (2002) 20-23.

Google Scholar

[2] Z.J. Wang, H.M. Zhang, L.G. Zhang, Y.Q. Li and J.S. Yuan, Chin. J. Lumin. 23 (2002) 364-368.

Google Scholar

[3] D.G. Li, P.Q. Chen, T.H. Li, F.H. Zhao, W.Q. Fu, L.Y. Huang and W.X. Cai, J. Mater. Sci. Eng. 27 (2009) 920-923.

Google Scholar

[4] M.Q. Song, G. Su, L.X. Cao, W. Liu, L.L. Zhao, Z. Dong, J. Wang, D.W. Ma and N. Chen, Mater. Rev. 26 (2012) 80-83.

Google Scholar

[5] Y.X. Xu, Q.J. Ning and C.A. Xu, J. Ceramics. 31 (2010) 498-501.

Google Scholar

[6] C.X. Guo and B.L. Li, Chin.J. Lumin. 22 (2001) 223-226.

Google Scholar

[7] C.F. Guo, B.L. Chu, J. Xu and Q. Su, Chin.J. Lumin. 25 (2004) 449-454.

Google Scholar

[8] P.Q. Chen, D.G. Li, F.H. Zhao and W.Q. Fu, New. Chem. Mater. 38 (2010) 88-90.

Google Scholar

[9] J.H. Luo, H.Y. Wei, Q.L. Huang, X. Hu, H.F. Zhao, R.C. Yu, D.M. Li, Y.H. Luo and Q.B. Meng, Chem. Commun. 49 (2013) 3881-3883.

Google Scholar

[10] B.H. Dong, L.X. Cao, G. Su and W. Liu, J. Colloid. Interf. Sci. 367 (2012) 178-182.

Google Scholar

[11] H.J. Li, M.J. Li, X.F. Wang, X.G. Xu, F.D. Liu and B.H. Yang, Mater. Lett. 102-103 (2013) 80-82.

Google Scholar

[12] H. Noh, M. Scharrer, M. A. Anderson, R.P.H. Chang and H. Hui, Phys. Rev. B. 77 (2008) 115136-115144.

Google Scholar

[13] B.H. Dong, L.X. Cao, G. Su, W. Liu, H. Qu and D. X. Jiang, J. Colloid. Interf. Sci. 339 (2009) 78-82.

Google Scholar

[14] M.Y. Ge, Y. Yue, Y.F. Liu, J. Wu,Y. Sun, X. Chen and N. Dai, Colloid. Surface. A. 384 (2011) 574-579.

Google Scholar

[15] H. Ehrlich, T. Shcherba, M. Zhilenko and G. Lisichin, Mater. Lett. 65 (2011) 107-109.

Google Scholar

[16] B. Steitz, Y. Axmann, H. Hofmann and A. Petri-Fink, J. Lumin. 128 (2008) 92-98.

Google Scholar

[17] S.D. Han, J.D. Kim, K.S. Myung, Y.H. Lee, H. Yang and K.C. Singh, Mater, Chem. Phys. 103 (2007) 89-94.

Google Scholar

[18] S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain and H. Manuspiya, Solloid. State. Sci. 14 (2012) 299-304.

DOI: 10.1016/j.solidstatesciences.2011.12.005

Google Scholar