Effects of Synthesis Temperature and Holding Time on the Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathode Material Using Rheological Phase Method

Article Preview

Abstract:

In this paper, LiNi1/3Co1/3Mn1/3O2 was prepared via a facile rheological phase reaction method. The effect of synthesis temperature and holding time on its electrochemical performance has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) tests and galvanostatic charge–discharge tests. The results suggest that the synthesis temperature and holding time greatly affect the electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 and the optimized synthesis condition for the synthesis of LiNi1/3Co1/3Mn1/3O2 via rheological phase reaction method is 900 °C for 8 h. The obtained sample possesses a highly ordered layered structure and low cation mixing. It delivers an initial discharge capacity of 198 mAh g-1 at 0.2 C and 140 mAh g-1 at 1.0 C between 2.5 and 4.6 V, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

351-357

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652-657.

DOI: 10.1038/451652a

Google Scholar

[2] T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater. 2 (2012) 860-872.

DOI: 10.1002/aenm.201200028

Google Scholar

[3] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587-603.

Google Scholar

[4] M.J. Armstrong, C. O'Dwyer, W.J. Macklin, J.D. Holmes, Evaluating the performace of nanostructured materials as lithium-ion battery electrodes, Nano Research 7 (2014) 1-62.

DOI: 10.1007/s12274-013-0375-x

Google Scholar

[5] T. Ohzuku, Y. Makimura, Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries, Chem. Lett. 30 (2001) 642-643.

DOI: 10.1149/ma2005-02/4/107

Google Scholar

[6] W.H. Ryu, S.J. Lim, W.K. Kim, H. Kwon, 3-D dumbbell-like LiNi1/3Co1/3Mn1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries, J. Power Sources 257 (2014) 186-191.

DOI: 10.1016/j.jpowsour.2014.02.003

Google Scholar

[7] W. Xiong, Y. Jiang, Z. Yang, D. Li, Y. Huang, High-performance hierarchical LiNi1/3Mn1/3Co1/3O2 microspheres synthesized via a facile template-sacrificial route, J. Alloys Comp. 589 (2014) 615-621.

DOI: 10.1016/j.jallcom.2013.12.047

Google Scholar

[8] X.F. Bie, F. Du, Y.H. Wang, K. Zhu, H. Ehrenberg, K. Nikolowski, C.Z. Wang, G. Chen, Y. J Wei, Relationships between the crystal/interfacial properties and electrochemical performance of LiNi0. 33Co0. 33Mn0. 33O2 in the voltage window of 2. 5–4. 6 V, Electrochim. Acta 97 (2013).

DOI: 10.1016/j.electacta.2013.02.131

Google Scholar

[9] C.H. Lu, B.J. Shen, Electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders prepared from microwave-hydrothermally derived precursors, J. Alloys Comp. 497 (2010) 159-165.

DOI: 10.1016/j.jallcom.2010.02.127

Google Scholar

[10] X.Y. Zhang, W.J. Jiang, X.P. Zhu, A. Maugera, Qilu, C.M. Juliend, Aging of LiNi1/3Co1/3Mn1/3O2 cathode material upon exposure to H2O, J. Power Sources 196 (2011) 5102-5105.

DOI: 10.1016/j.jpowsour.2011.02.009

Google Scholar

[11] Y.Y. Zhang, X.Y. Wu, Y. Lin, D. Wang, C.M. Zhang, D.N. He, Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material by a modified sol–gel method for lithium-ion battery, J. Sol-Gel Sci. Technol. 68 (2013) 169-174.

DOI: 10.1007/s10971-013-3148-9

Google Scholar

[12] J.L. Xie, X. Huang, Z.B. Zhu, J.H. Dai, Hydrothermal synthesis of Li(Ni1/3Co1/3Mn1/3)O2 for lithium rechargeable batteries Ceram. Int. 36 (2010) 2485-2487.

DOI: 10.1016/j.ceramint.2010.07.008

Google Scholar

[13] H.L. Zhu, J. Li, Z.Y. Chen, Q.F. Li, T. Xie, L.J. Li, Y.Q. Lai, Molten salt synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode materials, Synth. Met. 187 (2014) 123-129.

DOI: 10.1016/j.synthmet.2013.10.032

Google Scholar

[14] H.B. Ren, Y.R. Wang, D.C. Li, L.H. Ren, Z.H. Peng, Y.H. Zhou, Synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium battery by the rheological phase method, J. Power Sources 178 (2008) 439-444.

DOI: 10.1016/j.jpowsour.2007.12.004

Google Scholar

[15] J. Xiao, H. Zhan, Y.H. Zhou, Synthesis of layered-structure LiMn1−xCrxO2 for lithium-ion batteries by the rheological phase method, Mater. Lett. 58 (2004) 1620-1624.

DOI: 10.1016/j.matlet.2003.09.050

Google Scholar

[16] L. Tan, Z.M. Luo, H.W. Liu, Y. Yu, Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method, J. Alloys Compd. 502 (2010) 407-410.

DOI: 10.1016/j.jallcom.2010.04.182

Google Scholar

[17] L. Tan, H.W. Liu, High rate charge–discharge properties of LiNi1/3Co1/3Mn1/3O2 synthesized via a low temperature solid-state method, Solid State Ionics 181 (2010) 1530-1533.

DOI: 10.1016/j.ssi.2010.08.016

Google Scholar

[18] Y. Koyamaa, I. Tanakaa, H. Adachia, Y. Makimurab, T. Ohzukub, Crystal and electronic structure of superstructural Li1-xNi1/3Co1/3Mn1/3O2 (0≤x≤1), J. Power Sources 119–121 (2003) 644-648.

DOI: 10.1016/s0378-7753(03)00194-0

Google Scholar

[19] J.M. Kim, H.T. Chung, The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4. 7 V, Electrochim. Acta 49 (2004) 937-944.

DOI: 10.1016/j.electacta.2003.10.005

Google Scholar

[20] E. Shinova, R. Stoyanova, E. Zhecheva, G.F. Ortiz, P. Lavela, J.L. Tirado, Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries, Solid State Ionics 179 (2008) 2198-2208.

DOI: 10.1016/j.ssi.2008.07.026

Google Scholar