In Situ Synthesis of Graphitized-Carbon Coated Li4Ti5O12/C Anode for High-Rate Lithium Ion Batteries

Article Preview

Abstract:

Graphitized-Carbon coated Li4Ti5O12/C (Li4Ti5O12/GC) composites were prepared from Li2CO3, TiO2 and aromatic resorcinol via a facile rheological phase method. The microstructure and morphology of the samples were determined by XRD and SEM. The electrochemical performances of the samples were characterized by galvanostatic charge-discharge test and electrochemical impedance spectroscopy (EIS). The results reveal that the coating of graphitized carbon could effectively enhance the charge/transfer kinetics of the Li4Ti5O12 electrode. The Li4Ti5O12/GC could deliver a discharge specific capacity of 166 mAh/g at 0.2 C, 148 mAh/g at 1.0 C, 142 mAh/g at 3.0 C, 138 mAh/g at 5.0 C and 127 mAh/g at 10.0 C, respectively, and it still could remain at 132 mAh/g after cycled at 5.0 C for 100 cycles. The excellent rate capability of the Li4Ti5O12/C makes it a promising anode material for high rate lithium ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

358-364

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Nugroho, S.J. Kim, K.Y. Chung, J. Kim, Electrochemica Acta 78(2012) 623-632.

Google Scholar

[2] T. Ohzuku, A. Ueda, N. Yamamoto, Journal of Electrochemical Society 142 (1995) 1431-1435.

Google Scholar

[3] Y.F. Yi, L.J. Jiang, J. Shu, C.B. Yue, R.S. Zhu, H.B. Qiao, Journal of Physics and Chemistry of Solids 71(2010) 1236-1242.

Google Scholar

[4] C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, Journal of the Electrochemical Society 148 (2001) A102-A104.

DOI: 10.1149/1.1344523

Google Scholar

[5] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, Journal of Power Sources 81–82 (1999) 300-305.

DOI: 10.1016/s0378-7753(99)00209-8

Google Scholar

[6] K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S.T. Myung, Y.K. Sun, Advanced Materials 22 (2010) 3052-3057.

DOI: 10.1002/adma.201000441

Google Scholar

[7] A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla, Chemistry of Materials 22 (2010) 2857-2863.

Google Scholar

[8] S.C. Lee, S.M. Lee, J.W. Lee, J.B. Lee, S.M. Lee, S.S. Han, H.C. Lee, H.J. Kim, Journal of Physical Chemistry C 113 (2009) 18420-18423.

DOI: 10.1021/jp905114c

Google Scholar

[9] B.B. Tian, H.F. Xiang, L. Zhang, Z. Li, H.H. Wang, Electrochimica Acta 55(2010) 5453-5458.

Google Scholar

[10] H.B. Wu, S. Chang, X.L. Liu, L.Q. Yu, G.L. Wang, D.X. Cao, Y.M. Zhang, B.F. Yang, P.L. She, Solid State Ionics, 232 (2013) 13-18.

DOI: 10.1016/j.ssi.2012.10.027

Google Scholar

[11] Y.J. Bai, C. Gong, Y.X. Qi, N. Lun, J. Feng, Journal of Materials Chemistry 22(2012) 19054-19060.

Google Scholar

[12] S. Ji, J.Y. Zhang, W.W. Wang, Y. Huang, Z.R. Feng, Z.T. Zhang, Z.L. Tang, Materials Chemistry and Physics 123(2010) 510-515.

Google Scholar

[13] V.D. Nithya, R.K. Selvan, K. Vediappan, S. Sharmila, C.W. Lee, Appl. Surf. Sci., 261 (2012) 515-519.

Google Scholar

[14] Y.R. Jhan, J.G. Duh, Electrochim. Acta 63 (2012) 9-15.

Google Scholar

[15] X. Li, M.Z. Qu, Z.L. Yu, Journal of Alloys and Compounds 487(2009) L12-L17.

Google Scholar

[16] Y.L. Qi, Y.D. Huang, D.Z. Jia, S.J. Bao, Z.P. Guo, Electrochimica Acta 54(2009) 4772-4776.

Google Scholar

[17] Z.J. Lin, X.B. Hu, Y.J. Huai, L. Liu, Z.H. Deng, J.S. Suo, Solid State Ionics 181(2010) 412-415.

DOI: 10.1016/j.ssi.2010.01.019

Google Scholar

[18] H.G. Jung, J.H. Kim, B. Scrosati, Y.K. Sun, Journal of power sources 196(2011) 7763-7766.

Google Scholar

[19] J. Wang, X.M. Liu, H. Yang, X.D. Shen, Journal of Alloys and Compounds 509(2011) 712-718.

Google Scholar

[20] J.X. Tang, L.J. Gao, Physica Scripta 85(2012) doi: 10. 1088/0031-8949/85/04/045802.

Google Scholar

[21] T. Yuan, X. Yu, R. Cai, Y.K. Zhou, Z.P. Shao, Journal of Power sources 195(2010) 4997-5004.

Google Scholar

[22] T. Ogihara, M. Yamada, A. Fujita, S. Akao, K. Myoujin, Materials Research Bulletin 46(2011) 796-800.

DOI: 10.1016/j.materresbull.2011.02.041

Google Scholar

[23] X.B. Hu, Z.J. Lin, K. Yang, Y.J. Huai, Z.H. Deng, Electrochimica Acta 56(2011) 5046-5053.

Google Scholar

[24] Y. Shi, L. Wen, F. Li, H.M. Cheng, Journal of Power Sources 196(2011) 8610-8617.

Google Scholar

[25] X. Li, M. Z, Qu, Y.J. Huai, Z.L. Yu, Electrochimica Acta 55(2010) 2978-2982.

Google Scholar

[26] J.G. Kim, D.Q. Shi, M.S. Park, G. Jeong, Y. U. Heo, M. Seo, Y.J. Kim, J.H. Kim, S.X. Dou, Nano Research 5(2013) 365-372.

Google Scholar

[27] M.J. Hu, Y.Z. Jiang, M. Yan, Journal of Alloys and Compounds 603(2014) 202-206.

Google Scholar

[28] Y.B. He, F. Ning, B. Li, Q.S. Song, W. Lv, H. Du, D. Zhai, F. Su, Q.H. Yang, F. Kang, Journal of Power Sources 202(2012) 253-261.

Google Scholar