Preparation of New Multi-Component Nanometer Manganese Dioxide/Carbon for Air Electrode

Article Preview

Abstract:

Lithium air batteries have aroused a considerable concern all over the world owing to their outstanding performances. Especially, catalysts of the air electrode, as one of the most core components of lithium air batteries, have been most extensively studied in recent years. In this paper the nanometer manganese dioxide catalysts and their compounds with Super P, TNRGO and OMC were prepared successfully via hydrothermal synthetic method. Characterized by XRD, SEM and BET, most of them have regular shape, perfect dispersion and high specific surface area, especially SBET of MnO2/TNRGO/OMC of the three-component catalysts was up to 126.70m2/g. The air electrodes with nanoMn02/carbons catalysts have lower resistance, and better reversibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

365-370

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Girishkumar, B. McCloskey, A.C. Luntz, etal, Lithium-Air Battery: Promise and Challenges. Phys. Chem. Lett. 1(2010)2193–2203.

DOI: 10.1021/jz1005384

Google Scholar

[2] Kraytsberg, Alexander, Ein-Eli Yair. Review on Li-air batteries– opportunities, limitations and perspective. Power Sources 196(2011)886–893.

DOI: 10.1016/j.jpowsour.2010.09.031

Google Scholar

[3] R. Padbury, X. Zhang. Power Sources 196 (2011) 4436–4444.

Google Scholar

[4] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Barde, P. Novak, P.G. Bruce. J. Am. Chem. Soc. 133 (2011) 8040–8047.

Google Scholar

[5] P. Kichambare, J. Kumar, S. Rodrigues, B. Kumar. Power Sources. 196 (2011)3310–3316.

Google Scholar

[6] Y. Zhang, H. Zhang, J. Li, etal. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery. Power Sources. 2013(240)390-396.

DOI: 10.1016/j.jpowsour.2013.04.018

Google Scholar

[7] Y. Gao, C. Wanga, W. Pu, etal. Preparation of high-capacity air electrode for lithium-air batteries. Sciverse ScienceDirect. 37(2012)12725-12730.

DOI: 10.1016/j.ijhydene.2012.03.127

Google Scholar

[8] J. Wang, Y. L. Li, X. L. Sun. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy. 2(2013)443-467.

DOI: 10.1016/j.nanoen.2012.11.014

Google Scholar

[9] J. Christensen, P. Albertus, R.S. Carrera. A Critical Review of Li/Air Batteries. The Electrochemical Soc. 159(2012)R1-R30.

DOI: 10.1149/2.086202jes

Google Scholar

[10] B.K. Ko, M. K. Kim , S.H. Kiml. Synthesis and electrocatalytic properties of various metals supportedon carbon for lithium–air battery. Chemical. 379(2013)9– 14.

Google Scholar

[11] J. P. Liang. R.Y. Hendrickson M. Theoretical energy density of Li-air batteries. Electrochemical Soc. 155(2008) A432-A437.

DOI: 10.1149/1.2901961

Google Scholar

[12] Y.J. Li. The properties and applications of air electrode. (2005).

Google Scholar

[13] K. M. Abraham , Z. Jiang. A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery. Electrochemical Science and technology. 143(1996)1-5.

Google Scholar

[14] Y.C. Lu, Z. Xu, A. Hubert, Gasteiger, S. Chen, H.S. Kimberly, S.H. Yang. Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries.J. American Chemical Society. 132(2010)12170-12171.

DOI: 10.1021/ja1036572

Google Scholar

[15] A. Dbart, A. J. Paterson, J. Bao, P.G. Bruce. a-Mn02 Nanowires: A Catalyst for the 02 Electrode in Rechargeable Lithium Batteries.J. Angewandte Chemie-International Edition. 47(2008) 4521-4524.

DOI: 10.1002/anie.200705648

Google Scholar

[16] J. Li, N. Wang, Y. Zhao . MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochemistry Com. 13(2011)698–700.

DOI: 10.1016/j.elecom.2011.04.013

Google Scholar

[17] Q. T. Qu, P. Zhang , B. Wang. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. Physical Chemistry C. 113(2009)14020-14027.

DOI: 10.1021/jp8113094

Google Scholar

[18] A. Debart, A. Paterson, J. Bao . α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. 47(2008)4521–4524.

DOI: 10.1002/anie.200705648

Google Scholar

[19] N. Nagara, H. Humadi . Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimica Acta. 51(2006)3039-3045.

DOI: 10.1016/j.electacta.2005.08.042

Google Scholar

[20] G. Zhang, J. Zheng, R. Liang. α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithiumair batteries. Electrochem Soc. 158(2011) A822–A827.

DOI: 10.1149/1.3590736

Google Scholar

[21] J. W, H.W. Study of the air electrode catalyst for oxygen reduction. Power Technology. 33(2009)583-586.

Google Scholar

[22] J. Read. Characterization of the lithium/oxygen organic electrolyte battery. Electrochemical Society. 149(2002)A1190-A1195.

DOI: 10.1149/1.1498256

Google Scholar

[23] X. Xiao ,T. YanHong, Z. XueJun. Electrochemical Properties of Graphene/MnO2 Composite . Chinese Ceramic Society. 41(2013)39-43.

Google Scholar