[1]
G. Girishkumar, B. McCloskey, A.C. Luntz, etal, Lithium-Air Battery: Promise and Challenges. Phys. Chem. Lett. 1(2010)2193–2203.
DOI: 10.1021/jz1005384
Google Scholar
[2]
Kraytsberg, Alexander, Ein-Eli Yair. Review on Li-air batteries– opportunities, limitations and perspective. Power Sources 196(2011)886–893.
DOI: 10.1016/j.jpowsour.2010.09.031
Google Scholar
[3]
R. Padbury, X. Zhang. Power Sources 196 (2011) 4436–4444.
Google Scholar
[4]
S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Barde, P. Novak, P.G. Bruce. J. Am. Chem. Soc. 133 (2011) 8040–8047.
Google Scholar
[5]
P. Kichambare, J. Kumar, S. Rodrigues, B. Kumar. Power Sources. 196 (2011)3310–3316.
Google Scholar
[6]
Y. Zhang, H. Zhang, J. Li, etal. The use of mixed carbon materials with improved oxygen transport in a lithium-air battery. Power Sources. 2013(240)390-396.
DOI: 10.1016/j.jpowsour.2013.04.018
Google Scholar
[7]
Y. Gao, C. Wanga, W. Pu, etal. Preparation of high-capacity air electrode for lithium-air batteries. Sciverse ScienceDirect. 37(2012)12725-12730.
DOI: 10.1016/j.ijhydene.2012.03.127
Google Scholar
[8]
J. Wang, Y. L. Li, X. L. Sun. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy. 2(2013)443-467.
DOI: 10.1016/j.nanoen.2012.11.014
Google Scholar
[9]
J. Christensen, P. Albertus, R.S. Carrera. A Critical Review of Li/Air Batteries. The Electrochemical Soc. 159(2012)R1-R30.
DOI: 10.1149/2.086202jes
Google Scholar
[10]
B.K. Ko, M. K. Kim , S.H. Kiml. Synthesis and electrocatalytic properties of various metals supportedon carbon for lithium–air battery. Chemical. 379(2013)9– 14.
Google Scholar
[11]
J. P. Liang. R.Y. Hendrickson M. Theoretical energy density of Li-air batteries. Electrochemical Soc. 155(2008) A432-A437.
DOI: 10.1149/1.2901961
Google Scholar
[12]
Y.J. Li. The properties and applications of air electrode. (2005).
Google Scholar
[13]
K. M. Abraham , Z. Jiang. A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery. Electrochemical Science and technology. 143(1996)1-5.
Google Scholar
[14]
Y.C. Lu, Z. Xu, A. Hubert, Gasteiger, S. Chen, H.S. Kimberly, S.H. Yang. Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries.J. American Chemical Society. 132(2010)12170-12171.
DOI: 10.1021/ja1036572
Google Scholar
[15]
A. Dbart, A. J. Paterson, J. Bao, P.G. Bruce. a-Mn02 Nanowires: A Catalyst for the 02 Electrode in Rechargeable Lithium Batteries.J. Angewandte Chemie-International Edition. 47(2008) 4521-4524.
DOI: 10.1002/anie.200705648
Google Scholar
[16]
J. Li, N. Wang, Y. Zhao . MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochemistry Com. 13(2011)698–700.
DOI: 10.1016/j.elecom.2011.04.013
Google Scholar
[17]
Q. T. Qu, P. Zhang , B. Wang. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. Physical Chemistry C. 113(2009)14020-14027.
DOI: 10.1021/jp8113094
Google Scholar
[18]
A. Debart, A. Paterson, J. Bao . α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. 47(2008)4521–4524.
DOI: 10.1002/anie.200705648
Google Scholar
[19]
N. Nagara, H. Humadi . Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimica Acta. 51(2006)3039-3045.
DOI: 10.1016/j.electacta.2005.08.042
Google Scholar
[20]
G. Zhang, J. Zheng, R. Liang. α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithiumair batteries. Electrochem Soc. 158(2011) A822–A827.
DOI: 10.1149/1.3590736
Google Scholar
[21]
J. W, H.W. Study of the air electrode catalyst for oxygen reduction. Power Technology. 33(2009)583-586.
Google Scholar
[22]
J. Read. Characterization of the lithium/oxygen organic electrolyte battery. Electrochemical Society. 149(2002)A1190-A1195.
DOI: 10.1149/1.1498256
Google Scholar
[23]
X. Xiao ,T. YanHong, Z. XueJun. Electrochemical Properties of Graphene/MnO2 Composite . Chinese Ceramic Society. 41(2013)39-43.
Google Scholar