Influence of Substrate Temperature on the Al and Zr Co-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering

Article Preview

Abstract:

ZnO doped Al2O3 and ZrO2 (ZAZO) thin films were deposited by the radio frequency magnetron sputtering on substrate temperature with 100°C, 150°C, 200°C, 250°C and 300°C. The surface morphology and electrical properties of the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and four-probe tester. The results showed that the substrate temperature obviously influenced the grain size of ZAZO films. The ZnO thin film had the largest crystallization orientation for the (002) peak and the smallest FWHM value at substrate temperature of 250°C. As the temperature increasing, the resistance of films gradually decreased till reaching a minimum at 250°C and then rised. Due to the increasing of Al and Zr concentrations into ZnO lattice, the Al ions created an abundance number of free electrons in the ZnO lattice, and in turn, the electrical conductivity increased. In addition, the improvement of film in the crystalline state results in the film resistivity decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

601-606

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.T. Elm, T. Henning, P.J. Klar, B. Szyszka, Effects of artificially structured micrometer holes on the transport behavior of Al doped ZnO layers, Appl. Phys. Lett. 93 (2008) 232101.

DOI: 10.1063/1.3040312

Google Scholar

[2] K. Jung, W.K. Choi, S.J. Yoon, H.J. Kim, J.W. Choi, Electrical and optical properties of Ga doped zinc oxide thin films deposited at room temperature by continuous composition spread, Appl. Surf. Sci. 256 (2010) 6219–6223.

DOI: 10.1016/j.apsusc.2010.03.144

Google Scholar

[3] L. Gong, Z.Z. Ye, J.G. Lu, L.P. Zhu, J.Y. Huang, X.Q. Gu, B.H. Zhao, Highly transparent conductive and near-infrared reflective ZnO: Al thin films, Vacuum. 84 (2010) 947–952.

DOI: 10.1016/j.vacuum.2010.01.010

Google Scholar

[4] C. Guillen, J. Herrero, Optical electrical and structural characteristics of Al: ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum. 84 (2010) 924–929.

DOI: 10.1016/j.vacuum.2009.12.015

Google Scholar

[5] S. Benramache, B. Benhaoua and H. Bentrah, Preparation of transparent, conductiveZnO: Co and ZnO: In thin films by ultrasonic spray method, J. Nanostruct. Chem. 3(2013) 54, 3.

DOI: 10.1186/2193-8865-3-54

Google Scholar

[6] J. Ramesh, G. Pasupathi, R. Mariappan, V. Senthil Kumar and V. Ponnuswamy, Struc-tural and optical properties of Ni doped ZnO thin films using sol–gel dip-coatingtechnique, Optik. 124 (2013) 2023–(2027).

DOI: 10.1016/j.ijleo.2012.06.035

Google Scholar

[7] H. Zhang, S. Yang and H. Liu, et al, Preparation and characterization of transparentconducting ZnO: W films by DC magnetron sputtering, J. Semicond. 32(2011) 043002.

DOI: 10.1088/1674-4926/32/4/043002

Google Scholar

[8] A.E. Manouni, F.J. Manjon and M. Perales, et al, Effect of thermal annealing onZnO: Al thin films grown by spray pyrolysis, Superlattices Microstruct. 42(2007) 134–139.

DOI: 10.1016/j.spmi.2007.04.005

Google Scholar

[9] T. Yamamoto and H. Yoshida, Physics and control of valence states in ZnO by codoping method, Physica B. 302 (2001) 155–162.

DOI: 10.1016/s0921-4526(01)00421-5

Google Scholar

[10] H.Y. Lee, Y.H. Chou, C.T. Lee, W.Y. Yeh and M.T. Chu, Mechanisms of lighting enhancement of Al nanoclusters-embedded Al doped ZnO film in GaN-based light-emitting diodes, J. Appl. Phys. 107 (2010) 014503.

DOI: 10.1063/1.3276092

Google Scholar

[11] Y.S. Kim and W.P. Tai, Electrical and optical properties of Al-doped ZnO thin films by sol–gel process, Appl. Surf. Sci. 253 (2007)4911–4916.

DOI: 10.1016/j.apsusc.2006.10.068

Google Scholar

[12] Y.H. Kim, K.S. Lee, T.S. Lee, B. Cheong, T.Y. Seong and W.M. Kim, Effects of substrate temperature and Zn addition on the properties of Al-doped ZnO films prepared by magnetron sputtering, Appl. Surf. Sci. 255 (2009) 7251–7256.

DOI: 10.1016/j.apsusc.2009.03.075

Google Scholar

[13] H.Y. Yue, A.M. Wu, Y.D. Feng, X.Y. Zhang and T.J. Li, Structures and properties of the Al-doped ZnO thin films prepared by radio frequency magnetron sputtering, Thin Solid Films. 519(2011) 5577-5581.

DOI: 10.1016/j.tsf.2011.03.026

Google Scholar

[14] J. Lee, D. Lee, D. Lim and K. Yang, Electrical and optical properties of ZnO: Al films deposited on flexible organic substrates for solar cell applications, Thin Solid Films. (2007) 6094–6098.

DOI: 10.1016/j.tsf.2006.12.099

Google Scholar

[15] B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, D.W. Zeng and C.S. Xie, Optimization of sputtering parameters for deposition of Al-doped ZnO films by r. f magnetron sputtering in Ar+H2 ambient at room temperature, Thin Solid Films. 520(2012) 6963–6969.

DOI: 10.1016/j.tsf.2012.07.049

Google Scholar

[16] M. Saad and A. Kassis, Effect of r. f power on the properties of rf magnetron Sputtered ZnO: Al thin films, Mater. Chem. Phys. 136(2012) 205–209.

DOI: 10.1016/j.matchemphys.2012.06.053

Google Scholar

[17] D.K. Kim, H.B. Kim, Dependence of the properties of sputter deposited Al-doped ZnO thin films on base pressure, J. Alloys Compd. 522(2012) 69–73.

DOI: 10.1016/j.jallcom.2012.01.078

Google Scholar

[18] D. Song, Effects of r. f power on surface-morphological, structural and electrical properties of aluminium-doped zinc oxide films by magnetron sputtering, Appl. Surf. Sci. 254(2008) 4171–4178.

DOI: 10.1016/j.apsusc.2007.12.061

Google Scholar

[19] J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho and J.M. Myoung, Influence of sputtering pressure on morphological, mechanical and electrical properties of Al-doped ZnO films, Solid-State Electron. 54(2010) 1447–1450.

DOI: 10.1016/j.sse.2010.07.002

Google Scholar

[20] Z.Y. Zhang, C.G. Bao, W.J. Yao, S.Q. Ma, L.L. Zhang and S.Z. Hou, Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method, Article Superlattices and Microstructures. 49(2011).

DOI: 10.1016/j.spmi.2011.04.002

Google Scholar

[21] W. Gao and Z.W. Li, ZnO thin films produced by magnetron sputtering, Ceramics International. 30(2004) 1155-1159.

DOI: 10.1016/j.ceramint.2003.12.197

Google Scholar

[22] J.K. Song and H.J. Yang, Influence of substrate temperature on the optical and piezoelectric properties of ZnO thin films deposited by r. f magnetron sputtering, Applied Surface Science. 253 (2007) 7330-7335.

DOI: 10.1016/j.apsusc.2007.03.020

Google Scholar

[23] L. Cui, H.Y. Zhang, G.G. Wang, F. X. Yang, X.P. Kuang, R. Sun and J.C. Han, Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0 0 0 1) substrates by magnetron Sputtering, Applied Surface Science. 258 (2012).

DOI: 10.1016/j.apsusc.2011.10.076

Google Scholar

[24] J.S. Liu, Z.Q. Li, K.J. Zhu, M.X. He, M.Q. Cong, S. Zhang, J. Peng and Y.N. Liu, The effects of ZnO layer and annealing temperature on the structure, optical and film–substrate cohesion properties of SiGe thin films prepared by radio frequency magnetron sputtering, Applied Surface Science. 259(2012).

DOI: 10.1016/j.apsusc.2012.07.057

Google Scholar

[25] H.F. Liu and Q.S. Guo, Comparison of Preparation and performance between Ti-doped ZnO Thin Films and Ti-Al Co-doped ZnO Thin Films, Journal of Synthetic Crystals. 39(2010) 1152-1155.

DOI: 10.1166/mex.2015.1218

Google Scholar