Structure and Photoelectric Properties of Cu3N Thin Films by Reactive Magnetron Sputtering

Article Preview

Abstract:

Cu3N thin films can potentially be used for development of optical storage devices and integrate circuit of semiconductor. In this study the Cu3N films were deposited on glass substrate successfully by reactive direct current magnetron sputtering at different N2/(N2+Ar) flow ratio. The results showed that the nitrogen partial pressure affected the preferring orientation of the thin films when the sputtering power and substrate temperature was fixed. With increasing N2/(N2+Ar) flow ratio from 10% to 90%, Cu3N(111) orientation with rich-copper changed to Cu3N(100) orientation with rich nitrogen, the transmittance of the thin films improved gradually, and the corresponding optical band gap (Eg) increased from 1.10 eV to 1.21eV. The resistivity of copper nitrogen films changed from 5.62Ω.cm to 3.00×103Ω.cm at the scope of 10%~90% of N2/(N2+Ar) flow ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

620-624

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. G. Ji, Y.H. Zhang, Y. Yuan, C. Wang, Mater. Lett. 60 (2006) 3758.

Google Scholar

[2] G. H. Yue, P.X. Yan, J.Z. Liu, M.X. Wang, M. Li, X.M. Yuan, J. Appl. Phys. 98 (2005) 103506.

Google Scholar

[3] X.Y. Fan, Z.G. Wu, G.A. Zhang, C. Li, B.S. Geng, H.J. Li, P.X. Yan, J. Alloy Compd. 440 (2007) 254.

Google Scholar

[4] M. Guadalupe Moreno-Armenta, G. Soto, Solid State Sci. 10 (2008) 573.

Google Scholar

[5] J.G. Zhao, L.X. Yang, Y. Yu, S.J. You, J. Liu, C.Q. Jin, Phys. Status Solidi B 243 (2006) 573.

Google Scholar

[6] Z.Q. Liu, W.J. Wang, T.M. Wang, S. Chao, S.K. Zheng, Thin Solid Films 325 (1998) 55.

Google Scholar

[7] J. Wang, J.T. Chen, X.M. Yuan, Z.G. Wu, B.B. Miao, P.X. Yan, J. Cryst. Growth 286 (2006) 407.

Google Scholar

[8] T. Maruyama, T. Morishita, J. Appl. Phys. 78 (6) (1995) 4104.

Google Scholar

[9] G. H. Yue, P.X. Yan, J. Wang, J. Cryst. Growth 274 (2005) 464.

Google Scholar

[10] G. Soto, J.A. Dı´az, W. de la Cruz, Mater. Lett. 57 (2003) 4130.

Google Scholar

[11] L. J. Maya, Vac. Sci. Technol. 11 (1993) 603.

Google Scholar

[12] M. Asano, K. Umeda, A. Tasaki, Jpn. J. Appl. Phys. 29 (1990) (1985).

Google Scholar

[13] J. Tauc, Grigorovici R, Vancu A. Phys. State. 15(1966) 627.

Google Scholar

[14] P. Klug, L. Alexander. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials: Second edit ion [M]. Wiley, New York, 1974: 687.

Google Scholar

[15] Y. Du, A. Ji, L. Ma, et al. Journal of Crystal Growth 280(2005) 490.

Google Scholar