Fabrication and Property of W/Tininb Shape Memory Alloy Laminated Composite

Article Preview

Abstract:

W/TiNiNb shape memory alloy laminated composites were fabricated by vacuum hot press, forging and rolling. The microstructure, transformation behavior, mechanical behavior and damping capacity of the laminated composite were investigated by SEM, DSC, DMA and bending test, respectively. The results showed that the W layer and the TiNiNb shape memory alloy layer in the composite was about 15 μm and 5 μm, respectively. The TiNiNb alloy in the composite exhibited the reversible martensite transformation. The composite also had high damping capacity (tanδ=0.03). The three-point bending test showed various plateaus in the stress–strain curve due to delamination processes, which are suitable for enhancing the fracture toughness of the laminates. The flexure strength of the laminated composite was 1260 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-216

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q.Z. Yan, X.X. Zhang, T.N. Wang, C.T. Yang, C.C. Ge, Effect of hot working process on the mechanical properties of tungsten materials, J Nucl Mater. 442 (2013)S233-S236.

DOI: 10.1016/j.jnucmat.2013.01.307

Google Scholar

[2] J. Reiser, M. Rieth, B. Dafferner, A. Hoffmann, Tungsten foil laminate for structural divertor applications - Basics and outlook, J Nucl Mater. 423 (2012)1-8.

DOI: 10.1016/j.jnucmat.2012.01.010

Google Scholar

[3] P. Norajitra, L. Boccaccini, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, I. Landman, D. Maisonnier, P. Sardain, C. Nardi, Development of He-cooled Divertors for Fusion Power Plants, First generation of fusion power plants: Design and technology, Proceedings of a technical meeting, (2006).

DOI: 10.1088/0029-5515/45/11/007

Google Scholar

[4] J. Reiser, M. Rieth, B. Dafferner, A. Hoffmann, X.O. Yi, D.E.J. Armstrong, Tungsten foil laminate for structural divertor applications - Analyses and characterisation of tungsten foil, J Nucl Mater. 424 (2012)197-203.

DOI: 10.1016/j.jnucmat.2012.02.030

Google Scholar

[5] J. Reiser, M. Rieth, A. Moslang, B. Dafferner, A. Hoffmann, X.O. Yi, D.E.J. Armstrong, Tungsten foil laminate for structural divertor applications - Tensile test properties of tungsten foil, J Nucl Mater. 434 (2013)357-366.

DOI: 10.1016/j.jnucmat.2012.12.003

Google Scholar

[6] Y.J. Guo, Z.Q. Shi, Y.K. Xu, G.J. Qiao, Correlation between microstructure and tensile behavior of metal-intermetallic laminate compound with different initial Ni foil thickness, Rare Metals. 33 (2014)196-202.

DOI: 10.1007/s12598-013-0203-1

Google Scholar

[7] Z. Chen, X. Wu, H. Hu, Q. Chen, Q. Liu, Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets, Journal of materials engineering and performance. 23 (2014)990-1001.

DOI: 10.1007/s11665-013-0804-8

Google Scholar

[8] M. Pozuelo, C.M. Cepeda-Jimenez, J. Chao, F. Carreno, O.A. Ruano, Fracture toughness for interfacial delamination of Cr-Mo steel multilayer laminate, Mater Sci Tech-Lond, 25 (2009)632-635.

DOI: 10.1179/174328408x327713

Google Scholar

[9] J. She, T. Inoue, K. Ueno, Multilayer Al<sub> 2</sub> O<sub> 3</sub>/SiC ceramics with improved mechanical behavior, Journal of the European Ceramic Society. 20 (2000)1771-1775.

DOI: 10.1016/s0955-2219(00)00048-0

Google Scholar

[10] F.J. Gotor, R. Bermejo, J. Córdoba, E. Chicardi, V. Medri, D. Dalle Fabbriche, Y. Torres, Processing and characterisation of cermet/hardmetal laminates with strong interfaces, Materials & Design. 58 (2014)226-233.

DOI: 10.1016/j.matdes.2014.01.076

Google Scholar

[11] L.M. Peng, H. Li, J.H. Wang, Processing and mechanical behavior of laminated titanium-titanium tri-aluminide (Ti-Al-3 Ti) composites, Mat Sci Eng a-Struct. 406 (2005)309-318.

DOI: 10.1016/j.msea.2005.06.067

Google Scholar

[12] M. Pozuelo, F. Carreño, O.A. Ruano, Delamination effect on the impact toughness of an ultrahigh carbon–mild steel laminate composite, Composites science and technology. 66 (2006)2671-2676.

DOI: 10.1016/j.compscitech.2006.03.018

Google Scholar

[13] T.M. Osman, J.J. Lewandowski, D.R. Lesuer, The fracture resistance of layered DRA materials: influence of laminae thickness, Materials Science and Engineering: A. 229 (1997)1-9.

DOI: 10.1016/s0921-5093(97)00001-4

Google Scholar

[14] C.M. Cepeda-Jimenez, M. Pozuelo, J.M. Garcia-Infanta, O.A. Ruano, F. Carreno, Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites, Mat Sci Eng a-Struct. 496 (2008)133-142.

DOI: 10.1016/j.msea.2008.05.015

Google Scholar

[15] C. Cepeda-Jiménez, M. Pozuelo, O.A. Ruano, F. Carreño, Influence of the thermomechanical processing on the fracture mechanisms of high strength aluminium/pure aluminium multilayer laminate materials, Materials Science and Engineering: A. 490 (2008)319-327.

DOI: 10.1016/j.msea.2008.01.034

Google Scholar

[16] K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, Jom. 57 (2005)25-31.

DOI: 10.1007/s11837-005-0229-4

Google Scholar

[17] J. Wadsworth, D.R. Lesuer, Ancient and modem laminated composites - from the Great Pyramid of Gizeh to Y2K, Mater Charact. 45 (2000)289-313.

DOI: 10.1016/s1044-5803(00)00077-2

Google Scholar

[18] J. Reiser, M. Rieth, A. Moslang, B. Dafferner, J. Hoffmann, T. Mrotzek, A. Hoffmann, D.E.J. Armstrong, X.O. Yi, Tungsten foil laminate for structural divertor applications - Joining of tungsten foils, J Nucl Mater. 436 (2013)47-55.

DOI: 10.1016/j.jnucmat.2013.01.295

Google Scholar

[19] J. Zhang, R. Perez, E. Lavernia, Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials, Journal of materials science. 28 (1993)2395-2404.

DOI: 10.1007/bf01151671

Google Scholar

[20] Y. Chen, H.C. Jiang, L.J. Rong, L. Xiao, X.Q. Zhao, Mechanical behavior in NiTiNb shape memory alloys with low Nb content, Intermetallics. 19 (2011)217-220.

DOI: 10.1016/j.intermet.2010.08.011

Google Scholar

[21] W. Liu, X.Q. Zhao, Mechanical Properties and Transformation Behavior of NiTiNb Shape Memory Alloys, Chinese J Aeronaut. 22 (2009)540-543.

DOI: 10.1016/s1000-9361(08)60138-7

Google Scholar

[22] X.Q. Zhao, X.M. Yan, Y.Z. Yang, H.B. Xu, Wide hysteresis NiTi(Nb) shape memory alloys with low Nb content (4.5 at.%), Mat Sci Eng a-Struct. 438 (2006)575-578.

DOI: 10.1016/j.msea.2006.03.110

Google Scholar

[23] S. Wang, F.M. Guo, D.Q. Jiang, Y. Liu, L.S. Cui, In situ W-NiTi shape memory alloy composite of high radiopacity, Scripta Mater. 81 (2014)4-7.

DOI: 10.1016/j.scriptamat.2014.02.002

Google Scholar

[24] C. Cepeda-Jiménez, R. Alderliesten, O.A. Ruano, F. Carreño, Damage tolerance assessment by bend and shear tests of two multilayer composites: glass fibre reinforced metal laminate and aluminium roll-bonded laminate, Composites Science and Technology. 69 (2009)343-348.

DOI: 10.1016/j.compscitech.2008.10.010

Google Scholar

[25] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science. 50 (2005)511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[26] D.S. Li, X.P. Zhang, Z.P. Xiong, Y.W. Mai, Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength, J Alloy Compd. 490 (2010)L15-L19.

DOI: 10.1016/j.jallcom.2009.10.025

Google Scholar