[1]
Q.Z. Yan, X.X. Zhang, T.N. Wang, C.T. Yang, C.C. Ge, Effect of hot working process on the mechanical properties of tungsten materials, J Nucl Mater. 442 (2013)S233-S236.
DOI: 10.1016/j.jnucmat.2013.01.307
Google Scholar
[2]
J. Reiser, M. Rieth, B. Dafferner, A. Hoffmann, Tungsten foil laminate for structural divertor applications - Basics and outlook, J Nucl Mater. 423 (2012)1-8.
DOI: 10.1016/j.jnucmat.2012.01.010
Google Scholar
[3]
P. Norajitra, L. Boccaccini, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, I. Landman, D. Maisonnier, P. Sardain, C. Nardi, Development of He-cooled Divertors for Fusion Power Plants, First generation of fusion power plants: Design and technology, Proceedings of a technical meeting, (2006).
DOI: 10.1088/0029-5515/45/11/007
Google Scholar
[4]
J. Reiser, M. Rieth, B. Dafferner, A. Hoffmann, X.O. Yi, D.E.J. Armstrong, Tungsten foil laminate for structural divertor applications - Analyses and characterisation of tungsten foil, J Nucl Mater. 424 (2012)197-203.
DOI: 10.1016/j.jnucmat.2012.02.030
Google Scholar
[5]
J. Reiser, M. Rieth, A. Moslang, B. Dafferner, A. Hoffmann, X.O. Yi, D.E.J. Armstrong, Tungsten foil laminate for structural divertor applications - Tensile test properties of tungsten foil, J Nucl Mater. 434 (2013)357-366.
DOI: 10.1016/j.jnucmat.2012.12.003
Google Scholar
[6]
Y.J. Guo, Z.Q. Shi, Y.K. Xu, G.J. Qiao, Correlation between microstructure and tensile behavior of metal-intermetallic laminate compound with different initial Ni foil thickness, Rare Metals. 33 (2014)196-202.
DOI: 10.1007/s12598-013-0203-1
Google Scholar
[7]
Z. Chen, X. Wu, H. Hu, Q. Chen, Q. Liu, Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets, Journal of materials engineering and performance. 23 (2014)990-1001.
DOI: 10.1007/s11665-013-0804-8
Google Scholar
[8]
M. Pozuelo, C.M. Cepeda-Jimenez, J. Chao, F. Carreno, O.A. Ruano, Fracture toughness for interfacial delamination of Cr-Mo steel multilayer laminate, Mater Sci Tech-Lond, 25 (2009)632-635.
DOI: 10.1179/174328408x327713
Google Scholar
[9]
J. She, T. Inoue, K. Ueno, Multilayer Al<sub> 2</sub> O<sub> 3</sub>/SiC ceramics with improved mechanical behavior, Journal of the European Ceramic Society. 20 (2000)1771-1775.
DOI: 10.1016/s0955-2219(00)00048-0
Google Scholar
[10]
F.J. Gotor, R. Bermejo, J. Córdoba, E. Chicardi, V. Medri, D. Dalle Fabbriche, Y. Torres, Processing and characterisation of cermet/hardmetal laminates with strong interfaces, Materials & Design. 58 (2014)226-233.
DOI: 10.1016/j.matdes.2014.01.076
Google Scholar
[11]
L.M. Peng, H. Li, J.H. Wang, Processing and mechanical behavior of laminated titanium-titanium tri-aluminide (Ti-Al-3 Ti) composites, Mat Sci Eng a-Struct. 406 (2005)309-318.
DOI: 10.1016/j.msea.2005.06.067
Google Scholar
[12]
M. Pozuelo, F. Carreño, O.A. Ruano, Delamination effect on the impact toughness of an ultrahigh carbon–mild steel laminate composite, Composites science and technology. 66 (2006)2671-2676.
DOI: 10.1016/j.compscitech.2006.03.018
Google Scholar
[13]
T.M. Osman, J.J. Lewandowski, D.R. Lesuer, The fracture resistance of layered DRA materials: influence of laminae thickness, Materials Science and Engineering: A. 229 (1997)1-9.
DOI: 10.1016/s0921-5093(97)00001-4
Google Scholar
[14]
C.M. Cepeda-Jimenez, M. Pozuelo, J.M. Garcia-Infanta, O.A. Ruano, F. Carreno, Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites, Mat Sci Eng a-Struct. 496 (2008)133-142.
DOI: 10.1016/j.msea.2008.05.015
Google Scholar
[15]
C. Cepeda-Jiménez, M. Pozuelo, O.A. Ruano, F. Carreño, Influence of the thermomechanical processing on the fracture mechanisms of high strength aluminium/pure aluminium multilayer laminate materials, Materials Science and Engineering: A. 490 (2008)319-327.
DOI: 10.1016/j.msea.2008.01.034
Google Scholar
[16]
K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, Jom. 57 (2005)25-31.
DOI: 10.1007/s11837-005-0229-4
Google Scholar
[17]
J. Wadsworth, D.R. Lesuer, Ancient and modem laminated composites - from the Great Pyramid of Gizeh to Y2K, Mater Charact. 45 (2000)289-313.
DOI: 10.1016/s1044-5803(00)00077-2
Google Scholar
[18]
J. Reiser, M. Rieth, A. Moslang, B. Dafferner, J. Hoffmann, T. Mrotzek, A. Hoffmann, D.E.J. Armstrong, X.O. Yi, Tungsten foil laminate for structural divertor applications - Joining of tungsten foils, J Nucl Mater. 436 (2013)47-55.
DOI: 10.1016/j.jnucmat.2013.01.295
Google Scholar
[19]
J. Zhang, R. Perez, E. Lavernia, Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials, Journal of materials science. 28 (1993)2395-2404.
DOI: 10.1007/bf01151671
Google Scholar
[20]
Y. Chen, H.C. Jiang, L.J. Rong, L. Xiao, X.Q. Zhao, Mechanical behavior in NiTiNb shape memory alloys with low Nb content, Intermetallics. 19 (2011)217-220.
DOI: 10.1016/j.intermet.2010.08.011
Google Scholar
[21]
W. Liu, X.Q. Zhao, Mechanical Properties and Transformation Behavior of NiTiNb Shape Memory Alloys, Chinese J Aeronaut. 22 (2009)540-543.
DOI: 10.1016/s1000-9361(08)60138-7
Google Scholar
[22]
X.Q. Zhao, X.M. Yan, Y.Z. Yang, H.B. Xu, Wide hysteresis NiTi(Nb) shape memory alloys with low Nb content (4.5 at.%), Mat Sci Eng a-Struct. 438 (2006)575-578.
DOI: 10.1016/j.msea.2006.03.110
Google Scholar
[23]
S. Wang, F.M. Guo, D.Q. Jiang, Y. Liu, L.S. Cui, In situ W-NiTi shape memory alloy composite of high radiopacity, Scripta Mater. 81 (2014)4-7.
DOI: 10.1016/j.scriptamat.2014.02.002
Google Scholar
[24]
C. Cepeda-Jiménez, R. Alderliesten, O.A. Ruano, F. Carreño, Damage tolerance assessment by bend and shear tests of two multilayer composites: glass fibre reinforced metal laminate and aluminium roll-bonded laminate, Composites Science and Technology. 69 (2009)343-348.
DOI: 10.1016/j.compscitech.2008.10.010
Google Scholar
[25]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science. 50 (2005)511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[26]
D.S. Li, X.P. Zhang, Z.P. Xiong, Y.W. Mai, Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength, J Alloy Compd. 490 (2010)L15-L19.
DOI: 10.1016/j.jallcom.2009.10.025
Google Scholar