Effect of Mn Substitution on Microstructures, Dielectric and Magnetic Properties of BiFeO3 Ceramics

Article Preview

Abstract:

Pure BiFeO3 ceramics and BiMnxFe1-xO3 (x=0.1, 0.15, 0.2, and 0.25) ceramics were prepared by sol-gel method. A structural phase transition from rhombohedral R3c to triangle R3m occurred in Mn-doped BFO ceramics. Mn-doped BFO ceramics exhibited better crystallinity, larger dielectric constant as well as smaller dielectric loss. Besides, a small nonlinearity of magnetization-field curves M(H) was observed, the remanent magnetization increased with the increase of manganese content, and all the BiMnxFe1-xO3 ceramics showed the typical antiferromagnetic, which could be attributed to the effective decrease in the concentration of oxygen vacancies, and the corresponding structural transition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-193

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.R. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films, Appl. Phys. Lett. 80(2002) 1628-1630.

DOI: 10.1063/1.1458695

Google Scholar

[2] M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (2005) R123.

Google Scholar

[3] A. Filippetti, N.A. Hill, First principles study of structural, electronic and magnetic interplay in ferroelectromagnetic yttrium manganite, J. Magn. Magn. Mater. 236(2001) 176-189.

DOI: 10.1016/s0304-8853(01)00445-0

Google Scholar

[4] P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3, J. Phys. C: Solid State Phys. 13(1980) 1931-(1940).

DOI: 10.1088/0022-3719/13/10/012

Google Scholar

[5] A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, The role of doping on the structural and functional properties of BiFe1−xMnxO3 magnetoelectric ceramics, J. Alloy. Compd. 504 (2010) 420-426.

DOI: 10.1016/j.jallcom.2010.05.135

Google Scholar

[6] S.K. Pradhan, B.K. Roul, D.R. Sahu, Enhancement of ferromagnetism andmultiferroicity in Ho doped Fe rich BiFeO3, Solid State Commun. 152 (2012) 1176-1180.

DOI: 10.1016/j.ssc.2012.03.034

Google Scholar

[7] X.H. Zheng, P.J. Chen, N. Ma, Z.H. Ma, D.P. Tang, Synthesis and dielectric properties of BiFeO3 derived from molten salt method, J Mater Sci: Mater Electron. 23(2012) 990-994.

DOI: 10.1007/s10854-011-0533-4

Google Scholar

[8] Y.H. Zhang, S.W. Yu, J.R. Cheng, The study of BiCrxFe1−xO3 thin films synthesized by sol-gel technique, J Eur. Ceram. Soc. 30(2010) 271-275.

DOI: 10.1016/j.jeurceramsoc.2009.05.005

Google Scholar

[9] E. Folcke, J.M. Le Breton, Y. Bréard, A. Maignan, Mössbauer spectroscopic analysis of Bi1−xSrxFeO3−δ perovskites, Solid State Sci. 12(2010) 1387-1392.

DOI: 10.1016/j.solidstatesciences.2010.05.015

Google Scholar

[10] B.C. Luo, C.L. Chen, K.X. Jin, Low temperature properties of multiferroic BiFe0. 9Cr0. 1O3 compound, Solid State Commun. 151(2011) 712-715.

DOI: 10.1016/j.ssc.2011.02.014

Google Scholar

[11] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A. 32(1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[12] C.F. Chung, J. P. Lin, J.M. Wu, Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films, Appl. Phys. Lett. 88(2006) 242909.

DOI: 10.1063/1.2214138

Google Scholar

[13] I. Sosnowska, M. Lowenhaupt, W.I.F. David, R.M. Ibberson, Investigation of the unusual magnetic spiral arrangement in BiFeO3, Physica B. 180/181(1992) 117-118.

DOI: 10.1016/0921-4526(92)90678-l

Google Scholar

[14] H. Naganuma, J. Miura, S. Okamura, Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films, Appl. Phys. Lett. 93(2008) 052901.

DOI: 10.1063/1.2965799

Google Scholar

[15] V.R. Palkar, C. Darshan, C. Kundaliya, S.K. Malik, Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system, J. Appl. Phys. 93(2003) 4337-4339.

DOI: 10.1063/1.1558992

Google Scholar

[16] V.R. Palkar, R. Pinto, BiFeO3 thin films: Novel effects, Pramana-J. Phys. 58(2002) 1003-1008.

DOI: 10.1007/s12043-002-0207-0

Google Scholar

[17] A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V. M. Haroutunian, Bismuth ferrites: New materials for semiconductor gas sensors, Sens. Actuators, B. 4(1991) 545-549.

DOI: 10.1016/0925-4005(91)80167-i

Google Scholar

[18] R. Mazumder, A. Sen, Effect of Pb-doping on dielectric properties of BiFeO3 ceramics, J. Alloys Compd. 475 (2009) 577-580.

DOI: 10.1016/j.jallcom.2008.07.082

Google Scholar

[19] M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe1−xMnxO3, J. Magn. Magn. Mater. 310(2007) 1177-1179.

DOI: 10.1016/j.jmmm.2006.10.287

Google Scholar

[20] Z.H. Chi, H. Yang, S.M. Feng, F.Y. Li, R.C. Yu, C.Q. Jin, Room-temperature ferroelectric polarization in multiferroic BiMnO3, J. Magn. Magn. Mater. 310(2007) 358-360.

DOI: 10.1016/j.jmmm.2006.10.335

Google Scholar

[21] A. Moreira dos Santos, S. Parashar, A.R. Raju, A.K. Cheetham, C.N.R. Rao, Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3, Solid State Commun. 122 (2002) 49-52.

DOI: 10.1016/s0038-1098(02)00087-x

Google Scholar