Enhancement of Oxygen Vacancies Induced Photovoltaic Effects in Bi0.9La0.1FeO3 Thin Films

Article Preview

Abstract:

The photovoltaic effect in Ag/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 heterostructures was investigated and the short circuit photocurrent was found to be strongly dependent on the polarization orientation and oxygen vacancies (VOs) distribution. The photocurrent direction was switched accompanying polarization switching. Besides, according to manipulate the VOs accumulated at either the Ag/Bi0.9La0.1FeO3 or the Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 interface by electric pulses, obvious enhancement of photovoltaic effects was obtained. These results can be explained well using the concepts of drift current and diffusion current controlled by the combination of oxygen vacancies and polarization. This work provides deep insights into the nature of photovoltaic effects in ferroelectric films, and will facilitate the advanced design devices combining spintronic, electronic, and optical functionalities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-182

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. A. Hill, J. Phys. Chen. B. 104, 6694 (2000).

Google Scholar

[2] H. Bea, M. Bibes. X. H. Zhu, S. Fusil, K. Bouzehouane, S. Petit, J. Kreisel, and, A. Barthelemy, Appl. Phys. Lett. 93, 072901(2008).

DOI: 10.1063/1.2940327

Google Scholar

[3] V. R. Pakar, J. John, and R. Pinto, Appl. Phys. Lett. 80, 1628 (2002).

Google Scholar

[4] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature. 442, 759 (2006).

Google Scholar

[5] R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).

Google Scholar

[6] A. M. dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, C. N. R. Rao, Solid State Commun. 122, 49(2002).

Google Scholar

[7] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature. 426, 55(2003).

DOI: 10.1038/nature02018

Google Scholar

[8] J. R. Teague, R. Gerson, W. J. James, Solid State Commun. 8, 1073(1970).

Google Scholar

[9] S. V. Kiselev, R. P. Ozerov, G. S. Zhanov, Sov. Phys. Dokl. 7, 742(1963).

Google Scholar

[10] I. Sosnovska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C. 15, 4835(1982).

Google Scholar

[11] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. -M. Liu, Z. G. Liu, Appl. Phys. Lett. 84, 1731(2004).

Google Scholar

[12] V. R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628(2002).

Google Scholar

[13] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science. 299, 1719(2003).

DOI: 10.1126/science.1080615

Google Scholar

[14] P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C. 13, 1931 (1980).

Google Scholar

[15] G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).

Google Scholar

[16] J. F. Li, J. L. Wang, M . Wutiig, R. Ramesh, N. G. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, D. Viehland, Appl. Phys. Lett. 84, 5261(2004).

DOI: 10.1063/1.1764944

Google Scholar

[17] T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. -W. Cheong, Science. 324, 63 (2009).

Google Scholar

[18] W. Ji, K. Yao, and Y. C. Liang, Adv. Mater. 22, 1763(2010).

Google Scholar

[19] N. A. Spaldin, S. -W. Cheong, and R. Ramesh, Phys. Today. 63, 38(2010).

Google Scholar

[20] C. -M. Hung, C. -S. Tu, W. D. Yen, L. S. Jou, M. -D. Jiang, and V. H. Schmidt, J. Appl. Phys. 111, 07D912 (2012).

Google Scholar

[21] H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S. -W. Cheong,Adv. Mater. 23, 3403 (2011).

Google Scholar

[22] S. Y. Yang, L. W. Martin, S. J. Byrnes, T. E. Conry, S. R. Basu, D. Paran,L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y. -H. Chu, C. -H. Yang, J. L. Musfeldt,D. G. Schlom, J. W. Ager III, and R. Ramesh,Appl. Phys. Lett. 95, 062909(2009).

DOI: 10.1063/1.3204695

Google Scholar

[23] D. Lee, S. H. Baek, T. H. Kim, J. -G. Yoon, C. M. Folkman, C. B. Eom, and T. W. Noh,Phys. Rew. B 84, 125305 (2011).

Google Scholar

[24] Moubah R, Rousseau O, Colson D, Artemenko A, Maglione M and Viret M, Adv. Funct. Mater. 22, 4814(2012).

DOI: 10.1002/adfm.201201150

Google Scholar

[25] B. Kundys, M. Viret, D. Colson, and D. O. Kundys, Nat. Mater. 9, 803 (2010).

Google Scholar

[26] B. Chen, Z. Zuo, Y. Liu, Q. F. Zhan, Y. Xie, H. Yang, G. Dai, Z. Li, G. Xu and Li R W, Appl. Phys. Lett. 100, 173903(2012).

Google Scholar

[27] V. Harshan and S. Kotru, Appl. Phys. Lett. 100, 173901(2012).

Google Scholar

[28] P. Zhang, D. Cao, C. Wang, M. Shen, X. Su, L. Fang, W. Dong and F. Zheng, Mater. Phys. Chem. 135, 304(2012).

Google Scholar

[29] F. Zeng, J. Xie, L. Fang, M. Shen and X. Wu, Appl. Phys. Lett. 93, 172101(2008).

Google Scholar

[30] M. Qin, K. Yao, Y. C. Liang and Gan B K 2007 Appl. Phys. Lett. 91, 092904(2007).

Google Scholar

[31] Y. P. Guo, B. Guo, W, Dong, H, Li and H. Z. Liu, Nanotech. 24, 275201 (2013).

Google Scholar

[32] R. Cauro, A. Gilabert, J. P. Contour, R. Lyonnet, M. -G. Medici, J. -C. Grenet, C. Leighton, and I. K. Schuller, Phys. Rev. B 63, 174423 (2001).

Google Scholar

[33] Z. G. Sheng, Y. P. Sun, J. M. Dai, X. B. Zhu, and W. H. Song, Appl. Phys. Lett. 89, 082503 (2006).

Google Scholar